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Abstract 
For century, This paper discuss the new era of Internet 
application and user experience, Ajax is a new technology and 
this paper address the Software system complexity and 
Algorithms for better feature and performance. 
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I.  INTRODUCTION  
 
Over the last few years, the web is establishing increased 
importance in society with the rise of social networking sites 
and the semantic web, facilitated and driven by the popularity 
of client-side scripting commonly known as AJAX. These 
allow extended functionality and more interactivity in web 
applications. Engineering practices dictate that we need to be 
able to model these applications. However, languages to 
model web applications have fallen behind, with most existing 
web modelling languages still solely focused on the hypertext 
structure of web sites, with little regard for user interaction or 
common web-specific concepts. This paper provides an 
overview of technologies in use in today’s web applications, 
along with some concepts we propose are necessary to model 
these. We present a brief survey of existing web modelling 
languages including WebML, UWE, W2000 and OOWS, 
along with a discussion of their capability to describe these 
new modeling approaches. Finally, we discuss the possibilities 
of extending an existing language to handle these new 
concepts. Keywords: web engineering, models, interactivity, 
AJAX, RIAs, events.  
 
The World Wide Web started out in the early 1990s as an 
implementation of a globally distributed hypertext system. 
Primitive pieces of software called web browsers allowed 
users to render hypertext into visually pleasing representations 
that could be navigated by keyboard or mouse. These early 
web sites were generally static pages, and were typically 
modeled with languages focused on the hypertext structure 
and navigation of the web site (Garzotto et al. 1993). The full 
integration of hypertext with relational databases allowed the 
creation of data-intensive websites, which also necessitated 
new modelling concepts and languages (Merialdo et al. 2003). 
Currently, the most popular modelling languages for web 
applications areWebML (Ceri et al. 2000) and UWE (Koch & 
Kraus 2002). Both of these languages represent web 
applications using conceptual models (data structure of the 
application domain), navigational models, and presentation 

models. As such, the ability to express the interactivity of the 
application is generally restricted to the navigational models, 
which allow designers to visually represent the components, 
links and pages of the application. These languages are 
excellent at describing older web applications; however 
recently the increased use of interactivity, client-side scripting, 
and web-specific concepts such as cookies and sessions have 
left existing languages struggling to keep up with these Rich 
Internet Applications (RIAs: Preciado et al. 2005). In this 
paper we aim to review these existing languages and identify 
where they are falling short, and how they could be improved. 
This paper is organised as follows. Section 2 is an overview of 
some of the features possible with rich scripting support. To 
model these new features, we propose in Section 3 some new 
modelling concepts for interactive web applications. We 
present a brief survey of the existing modelling languages 
WebML and UWE in Sections 4 and 5, and discuss their 
ability to model these new concepts. We briefly mention 
W2000, OOWS and other potential languages in Section 6; a 
summary of our language evaluations are presented in Table 2. 
In the final section, we discuss our findings, provide an 
overview of related work, and highlight future work of this 
research project. 2 New Features Arguably, the most 
important recent feature of the web is the ability to run scripts 
on the client (generally through Javascript). Combined with 
the ability to access and modify client-side Document Object 
Models (DOM:W3C Group 2004) of the browser, and the 
ability to compose asynchronous background requests to the 
web, these concepts together are commonly referred to as 
AJAX (Garrett 2005). AJAX allows applications to provide 
rich client-side interfaces, and allows the browser to 
communicate with the web without forcing page refreshes; 
both fundamental features of RIAs. Technologies like AJAX 
support thin client applications that can take full advantage of 
the computer power of the clients. These applications reduce 
the total cost of ownership (TCO) to organisations as they 
are deployed and maintained on directly manageable servers, 
and aim to be platform-independent on the client side. To 
achieve this, AJAX has had to overcome limitations of the 
underlaying HTTP/HTML protocols, such as synchronous and 
stateless request processing, and the pull model limitation 
where application state changes are always initiated by the 
client1. This has resulted in rich applications that use the web 
browser as a virtual machine. The impact of these 
technologies has been significant; new services such as 
Google Docs (Google Inc. 2006) are implementing 
collaborative software solutions directly on the web, based on 
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the software as a service philosophy, and to some degree 
competing with traditional desktop software such as Microsoft 
Office. RIAs can also be developed in environments such as 
Flash, which are provided as a plugin to existing web 
browsers, but can reduce accessibility2. One popular example 
of AJAX is to provide an auto-compliable destination address 
text field in an e-mail web application. As the user enters 
characters into this field, the client contacts the server for 
addresses containing these characters, displaying a list of 
suggested addresses. This improves usability, potentially 
reduces the overall bandwidth of network communication, and 
improves interactivity and responsiveness. An investigation of 
some of the most popular AJAX-based websites on the web 
allows us to identify some of the features that these new 
technology provides to web applications. This has allowed us 
to develop a comprehensive selection of use cases for AJAX 
technologies, which we omit from this paper for brevity. 
Without going into detail, and removing features that are 
already addressed in existing modeling languages, new 
application features that require support include: 
 
1. Storing data on the client and/or server, both volatile and 
persistent3; 
2. Allowing automatic user authentication based on cookies4; 
3. Allowing form validation to occur on the server,on the 
client before submission, or in real-time during form entry; 
4. Providing different output formats for resources, including 
HTML, XML, WML, and Flash, possibly based on the user-
agent of the visitor; 
5. Providing web services and data feeds, and integration with 
external services and feeds, both on the server and the client; 
6. Preventing the user from corrupting the state of a web 
application, for example by using browser navigation buttons; 
7. Providing more natural user actions such as dragand- drop, 
keyboard shortcuts, and interactive maps; 
8. Describing visual effects of transitions between application 
states5; 
9. Having scheduled events on either the client or the server; 
10. Allowing web applications to be used offline6; 
11. Distributing functionality between the client and the 
server, based on client functionality, determined at runtime. 
 
These new features are distributed over both the clients and 
servers of web applications. Existing languages based solely 
on replacing the entire client-side DOM on each request are 
clearly no longer appropriate, as scripting permits modifying 
the DOM at runtime. We require a more dynamic language, 
which can be extended to handle these new features. 
 
Recently, many new web trends have appeared under the Web 
2.0 umbrella, changing the web significantly, from read-only 
static pages to dynamic user-created content and rich 
interaction. Many Web 2.0 sites rely heavily on AJAX 
(Asynchronous JAVASCRIPT and XML) [8], a prominent 
enabling technology in which a clever combination of 
JAVASCRIPT and Document Object Model (DOM) 

manipulation, along with asynchronous client/server delta 
communication [16] is used to achieve a high level of user 
interactivity on the web. With this new change comes a whole 
set of new challenges, mainly due to the fact that AJAX 
shatters the metaphor of a web ‘page’ upon which many 
classic web technologies are based. One of these challenges is 
testing such applications [6, 12, 14]. With the ever-increasing 
demands on the quality of Web 2.0 applications, new 
techniques and models need to be developed to test this new 
class of software. How to automate such a testing technique is 
the question that we address in this paper. In order to detect a 
fault, a testing method should meet the following conditions 
[18, 20]: reach the fault-execution, which causes the fault to 
be executed, trigger the error creation, which causes the fault 
execution to generate an incorrect intermediate state, and 
propagate the error, which enables the incorrect intermediate 
state to propagate to the output and cause a detectable output 
error. Meeting these reach/trigger/propagate conditions is 
more difficult for AJAX applications compared to classical 
web applications. During the past years, the general approach 
in testing web applications has been to request a response 
from the server (via a hypertext link) and to analyze the 
resulting HTML. This testing approach based on the page-
sequence paradigm has serious limitations meeting even the 
first (reach) condition on AJAX sites. Recent tools such as 
Selenium1 use a capture/replay style for testing AJAX 
applications. Although such tools are capable of executing the 
fault, they demand a substantial amount of manual effort on 
the part of the tester. Static analysis techniques have 
limitations in revealing faults which are due to the complex 
run-time behavior of modern rich web applications. It is this 
dynamic run-time interaction that is believed [10] to make 
testing such applications a challenging task. On the other 
hand, when applying dynamic analysis on this new domain of 
web, the main difficulty lies in detecting the various doorways 
to different dynamic states and providing proper interface 
mechanisms for input values. In this paper, we discuss 
challenges of testing AJAX and propose an automated testing 
technique for finding faults in AJAX user interfaces. We 
extend our AJAX crawler, CRAWLJAX (Sections 4–5), to 
infer a state-flow graph for all (client-side) user interface 
states. We identify AJAX-specific faults that can occur in such 
states and generic and application-specific invariants that can 
serve as oracle to detect such faults (Section 6). From the 
inferred graph, we automatically generate test cases (Section 
7) that cover the paths discovered during the crawling process. 
In addition, we use our open source tool called ATUSA 
(Section 8), implementing the testing technique, to conduct a 
number of case studies (Section 9) to discuss (Section 10) and 
evaluate the effectiveness of our approach. 
 

A. Interface Model 

A web application’s interface is most obviously characterized 
by the variety of UI widgets displayed on each page, which we 
represent by elements of the set Widgets. Web applications 
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typically distinguish several basic widget classes such as text 
fields, radio buttons, drop-down list boxes etc.  
 
(Classes := {ctext, cradio, ccheck, cselect1, cselectn}), which 
we identify through the relation class : Widgets → Classes.  
 
For the purpose of input evaluation, it will be helpful to 
specify the ranges of values that users can enter/select in 
widgets. We specify this in the relation range: Widgets 
→P(S). Depending on the class of the widget w, range(w) will 
be: 
• the generic set S for text fields, which allow any input;  
• some fixed subset Sw →S for drop-down list boxes,which 
allow a 1-of-n selection; 
• the power set P(Sw) of some fixed subset Sw →S for multi-
select boxes, which allow an m-of-n selection; 
• some string sw →S for individual check boxes and radio 
buttons, which are either undefined or have one particular 
value. 
 
In applications based on our model, the placement of widgets 
on web pages (from the set Pages) is governed by a series of 
hierarchically nested layout containers (Containers) that define 
visual alignment and semantic cohesion of widgets. The 
nesting relationships between widgets and containers can be 
expressed in the relation container: (Widgets→ Containers) → 
(Containers->Pages) that indicates in which container or page 
s_→Containers → Pages a widget or container s→Widgets -> 
Containers is directly contained. To reason about transitive 
containment, we also define a convenience relation page: 
(Widgets→Containers) → Pages that identifies which page a 
widget is placed on by recursive application of the container 
relation: p = page(s) : → (p → Pages→p = container(s)) →c 
→ Containers : (c = container(s) → p = page(c))  
 
 

B. Data Model 

In our formal model, the variables holding the web 
application’s data are represented by elements of the set 
Variables. Variables may have different types—in most 
applications, we find Boolean, integer, floating-point and 
string values or sets  
 
(Types := {P(B),P(Z),P(R),P(S)},respectively).  
We express variables’ types by the relationtype : Variables → 
Types. 
 
To store the entered content, each widget must be bound to a 
variable in the application’s data model. This binding is 
modeled by the relation binding : Widgets → Variables. Note 
that several widgets can be bound to the same variable (e.g. a 
group of check boxes whose combined state is stored as a set 
of string values). 
 

C. Evaluation Aspects 

Input evaluations are characterized by several criteria that 
together constitute particular behavior rules. In this paper, we 
will discuss input evaluation for the purpose of deciding 
validity, visibility, and availability of widgets, i.e. for interface 
responses such as highlighting violating widgets, hiding 
invisible widgets, and disabling (e.g. “graying out”) 
unavailable widgets, respectively. 
 
At the core of each rule is an expression e → Expressions that 
describes the actual evaluation of certain values in order to 
arrive at a decision for one of the above purposes. Our model 
allows expressions to consist of arbitrarily nestable terms. 
These can trivially be literals (out of the universal set L := B 
→ R → S) or variables from the data model, but also 
comparisons, arithmetic, boolean or string operations, which 
can be distinguished by their operator op(e), so Expressions → 
(L → Variables) (for the sake of conciseness, we we will not 
go into the details of expressions’ concrete structure). 
Ultimately, an expression must resolve to a boolean value 
indicating the outcome of the decision. Of course, a rule for 
any purpose must relate to certain subjects on which the 
respective reaction is effected. These may not only be 
individual widgets, but also groups of widgets contained 
directly or transitively in a particular container or page, so we 
define Subjects := Widgets → Containers → Pages. Note that 
the subject widgets do not necessarily correspond to the 
expression’s parameters (business requirements might e.g. 
suggest that only one of several evaluated widgets should be 
highlighted as invalid if the validation fails). For the purpose 
of input validation, we must consider several additional 
characteristics. First, we can distinguish different levels of 
validation, which we will describe as Levels := {lexist, ltech, 
ldomain}. The most basic level is checking for the existence 
of any input in a required field. Next, the technical check 
concerns whether a particular input can be converted sensibly 
to the given data type. Finally, performing any domain-
specific validation of the input is only sensible if the previous 
two validation levels were satisfied. In practice, not all 
validation rules would typically be evaluated at the same 
time—from our experience from several industrial projects, 
we rather identified four common validation triggers  
 
(Triggers := {tblurWidget, tleavePage, tsaveData, 
tcommitData}):  
 
Validation may occur upon a widget’s “blurring” (i.e. losing 
focus) when the cursor is moved to another widget; upon 
leaving a page in order to jump to the next or previous page of 
the dialog; upon saving the data entered so far as a draft 
version, in order to prevent data loss or continue working on 
the dialog at a later time; and finally upon committing all 
entered data in order to proceed to the next task in a business 
process. By staging the validation through assigning rules to 
appropriate triggers, developers can strike a balance between 
business requirements and usability considerations, ensuring 
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data integrity while maintaining users’ flexibility in working 
with the application. In a similar vein, experience shows that 
typically not all rule violations are equally serious: Depending 
on the business semantics of each rule, developers may choose 
to assign different severity levels to it. We therefore 
distinguish  
 
Severities := {sinfo, swarning, serror} (with the natural order 
sinfo < swarning < serror),  
 
and define different behavior for different severities. 
 

D. Evaluation Rules 

Having introduced all aspects characterizing input evaluation, 
we can now define the constituent elements of the rules for 
different purposes: Rules determining visibility and 
availability of widgets are fully described by the deciding 
expression and the set of affected subjects, while validation 
rules require all of the aspects described above:  
 
Rvisibility : → Expressions×P(Subjects) Ravailability : → 
Expressions×P(Subjects) Rvalidation: → 
Expressions×P(Subjects) × Levels × Triggers × Severities  
 
While the visibility and availability rules, as well as the 
existence and domain validation rules, need to be specified by 
the application designer, the necessary technical validation 
checks can be inferred from the interface and data model. To 
facilitate an integrated display of all validation, we derive the 
subset of Rvalidation comprising the technical validation rules 
as  
{( λ, w, ltech, tblurWidget, serror) | →w → Widgets},  
based on the assumption that type or range violations should 
be detected as early as possible, and reported as errors. To 
access particular components of the rules’ tuples, our 
following discussion will assume the existence of the 
convenience functions expression, subjects, level, trigger, and 
severity that return the respective components of a rule. Since 
we will often be interested in all rules pertaining to a certain 
subject, we also define the abbreviation Rs p to denote all 
rules for a purpose p that affect a subject s. Summing up, we 
can describe the static, design-time specification of input 
evaluation for a web application as a tuple Aspec := (Widgets, 
class, range, Containers, Pages, container, binding, Variables, 
type, Rvisibility , Ravailability, Rvalidation). 
 

E. User Interface Behavior 

Last but not least, we must define how the user interface reacts 
to the various conditions that arise from input evaluation; 
namely validation results, visibility and availability of 
widgets, and navigation options. These will be covered in the 
following subsections. 
1) Issue Notifications: We suggest that validation issues be 
displayed in two ways: On top of each page, the interface 
displays a concise list of human-readable explanations for all 

violations that were identified on the current and other pages. 
In case several rules are violated for a particular set of 
subjects, we display only the most severe notification to 
reduce clutter, as indicated by the function issueDisp : 
Rvalidation → B:issueDisp(r) : → r → Issues → _r_ → Issues 
: (subjects(r_) → subjects(r) → severity(r_) > severity(r)) 
 
To further aid the user in identifying the invalid input, we 
highlight the respective widget in a color corresponding to the 
severity (e.g. red for errors, orange for warnings etc.). Two 
relationships influence this coloring scheme: Firstly, if the 
subject of a rule is not an individual widget, but rather a 
container, the issue is assumed to apply to all directly and 
transitively contain widgets, which are all colored accordingly. 
Secondly, if a subject is affected by several issues (through 
multiple rules or inclusion in affected containers), it will be 
colored according to the most severe issue. To indicate this, 
the partial relation highlight: Subjects →_ Severities indicates 
which severity (if any) applies to a particular subject: 
highlight(s) = v: → v = max ({v | v = highlight(container(s))} 
→ {v | →r → Rs validation : (issueDisp(r) → v = 
severity(r)}))  
 
We assume here that the relation max: P(Severities) → 
Severities returns the maximum element from a set of 
severities. 
2) Visibility: In the previous section, we have already often 
relied on an indication of whether a particular interface 
component is currently visible. For any given subject, this 
state depends both on any explicit visibility rules, and on the 
visibility of the surrounding containers, as the relation 
isVisible : Subjects → B indicates: isVisible(s) : → 
(isVisible(container(s)) → s → Pages) → r → Rvisibility(s): 
isSatisfied(expression(r)) 
 
In analogy to validation rules, where just one rule violation 
suffices to consider an input invalid, we require that all of a 
widget’s applicable visibility rules must be satisfied for it to 
be visible. 
3) Availability: In some use cases, developers may not want to 
render a widget invisible, thus hiding it from the interface 
model and removing its input from the data model, but would 
only like to prevent users from editing the widget’s contents, 
even though it remains part of the interface and data model. 
This deactivation can be accomplished by “graying out” the 
widget or otherwise preventing it from gaining the input focus, 
while still remaining visible. In our model, availability rules 
are stated and evaluated just like visibility rules, as the relation 
isAvailable : Subjects → B indicates: isAvailable(s) : → 
(isAvailable(container(s)) → s → Pages) → r → 
Ravailability(s): isSatisfied(expression(r)) 
 
Note that while visibility affects the data model and is used in 
quite a few of the above relations, availability is a pure 
interface reaction that does not affect how data is evaluated or 
stored. 
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4) Navigation Opportunities: When considering the 
availability of widgets, the navigation buttons on each page 
(typically, for navigating forward and backward in a dialog 
wizard, saving a draft of the current data, or committing it for 
further processing) require special treatment: The user should 
be prevented from saving a draft, let alone committing all 
input, but possibly even leaving a page, when the model still 
violates any validation rules. Since the availability of the 
corresponding buttons does not depend directly on the widget 
contents, but on the outcome of all validations in the 
respective scope, this behavior cannot be specified by means 
of regular availability rules. Instead, our model contains built-
in “meta” rules governing navigation opportunities. In the 
following predicates, we distinguish between validation rules 
that must be satisfied for saving a draft, and a possibly more 
restrictive set that must be satisfied for committing the input 
for further processing: commitEnabled : → r → Issues : 
(trigger(r) → commitBlocks → severity(r) = serror) 
saveEnabled : → r → Issues : (trigger(r) → saveBlocks → 
severity(r) = serror) leaveEnabled(from) : → r → Issues : 
(trigger(r) → leaveBlocks → severity(r) = serror →s → 
subjects(r): from = page(s)) 
 

F. AJAX Testing Challenges 

In AJAX applications, the state of the user interface is 
determined dynamically, through event-driven changes in the 
browser’s DOM that are only visible after executing the 
corresponding JAVASCRIPT code. The resulting challenges 
can be explained through the reach/trigger/propagate 
conditions as follows. Reach. The event-driven nature of 
AJAX presents the first serious testing difficulty, as the event 
model of the browser must be manipulated instead of just 
constructing and sending appropriate URLs to the server. 
Thus, simulating user events on AJAX interfaces requires an 
environment equipped with all the necessary technologies, 
e.g., JAVASCRIPT, DOM, and the XMLHttpRequest object 
used for asynchronous communication. One way to reach the 
fault-execution automatically for AJAX is by adopting a web 
crawler, capable of detecting and firing events on clickable 
elements on the web interface. Such a crawler should be able 
to exercise all user interface events of an AJAX site, crawl 
through different UI states and infer a model of the 
navigational paths and states. We proposed such a crawler for 
AJAX, discussed in our previous work [14], Trigger. Once we 
are able to derive different dynamic states of an AJAX 
application, possible faults can be triggered by generating UI 
events. In addition input values can cause faulty states. Thus, 
it is important to identify input data entry points, which are 
primarily comprised of DOM forms. In addition, executing 
different sequences of events can also trigger an incorrect 
state. Therefore, we should be able to generate and execute 
different event sequences. Propagate. In AJAX, any response 
to a client-side event is injected into the single-page interface 
and therefore, faults propagate to and are manifested at the 
DOM level. Hence, access to the dynamic run-time DOM is a 

necessity to be able to analyze and detect the propagated 
errors. Automating the process of assessing the correctness of 
test case output is a challenging task, known as the oracle 
problem [24]. Ideally a tester acts as an oracle who knows the 
expected output, in terms of DOM tree, elements and their 
attributes, after each state change. When the state space is 
huge, it becomes practically impossible. In practice, a baseline 
version, also known as the Gold Standard [5], of the 
application is used to generate the expected behavior. Oracles 
used in the web testing literature are mainly in the form of 
HTML comparators [22] and validators [2].  
 

G. Deriving AJAX States 

Here, we briefly outline our AJAX crawling technique and 
tool called CRAWLJAX [14]. CRAWLJAX can exercise 
client side code, and identify clickable elements that change 
the state within the browser’s dynamically built DOM. From 
these state changes, we infer a state-flow graph, which 
captures the states of the user interface, and the possible event-
based transitions between them. We define an AJAX UI state 
change as a change on the DOM tree caused either by server-
side state changes propagated to the client, or client-side 
events handled by the AJAX engine. We model such changes 
by recording the paths (events) to these DOM changes to be 
able to navigate between the different states. Inferring the 
State Machine. The state-flow graph is created incrementally. 
Initially, it only contains the root state and new states are 
created and added as the application is crawled and state 
changes are analyzed. The following components participate 
in the construction of the graph: CRAWLJAX uses an 
embedded browser interface (with different implementations: 
IE, Mozilla) supporting technologies required by AJAX; A 
robot is used to simulate user input (e.g., click, mouseOver, 
text input) on the embedded browser; The finite state machine 
is a data component maintaining the state-flow graph, as well 
as a pointer to the current state; The controller has access to 
the browser’s DOM and analyzes and detects state changes. It 
also controls the robot’s actions and is responsible for 
updating the state machine when relevant changes occur on 
the DOM. Detecting Clickables. CRAWLJAX implements an 
algorithm which makes use of a set of candidate elements, 
which are all exposed to an event type (e.g., click, 
mouseOver). In automatic mode, the candidate clickables are 
labeled as such based on their HTML tag element name and 
attribute constraints. For instance, all elements with a tag div, 
a, and span having attribute class="menuitem" are considered 
as candidate clickable. For each candidate element, the 
crawler fires a click on the element (or other event types, e.g., 
mouseOver), in the embedded browser. Creating States. After 
firing an event on a candidate clickable, the algorithm 
compares the resulting DOM tree with the way as it was just 
before the event fired, in order to determine whether the event 
results in a state change. If a change is detected according to 
the Levenshtein edit distance, a new state is created and added 
to the state-flow graph of the state machine. Furthermore, a 
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new edge is created on the graph between the state before the 
event and the current state. Processing Document Tree Deltas. 
After a new state has been detected, the crawling procedure is 
recursively called to find new possible states in the partial 
changes made to the DOM tree. CRAWLJAX computes the 
differences between the previous document tree and the 
current one, by means of an enhanced Diff algorithm to detect 
AJAX par- 212 trial updates which may be due to a server 
request call that injects new elements into the DOM. 
Navigating the States. Upon completion of the recursive call, 
the browser should be put back into the previous state. A 
dynamically changed DOM state does not register itself with 
the browser history engine automatically, so triggering the 
‘Back’ function of the browser is usually insufficient. To deal 
with this AJAX crawling problem, we save information about 
the elements and the order in which their execution results in 
reaching a given state. We then can reload the application and 
follow and execute the elements from the initial state to the 
desired state. CRAWLJAX adopts XPath to provide a reliable, 
and persistent element identification mechanism. For each 
state changing element, it reverse engineers the XPath 
expression of that element which returns its exact location on 
the DOM. This expression is saved in the state machine and 
used to find the element after a reload. Note that because of 
side effects of the element execution and server-side state, 
there is no guarantee that we reach the exact same state when 
we traverse a path a second time. It is, however, as close as we 
can get. Data Entry Points in order to provide input values on 
AJAX web applications, we have adopted a reverse 
engineering process, similar to [3, 10], to extract all exposed 
data entry points. To this end, we have extended our crawler 
with the capability of detecting DOM forms on each newly 
detected state (this extension is also shown in Algorithm 1). 
For each new state, we extract all form elements from the 
DOM tree. For each form, a hashcode is calculated on the 
attributes (if available) and the HTML structure of the input 
fields of the form. With this hashcode, custom values are 
associated and stored in a database, which are used for all 
forms with the same code. If no custom data fields are 
available yet, all data, including input fields, their default 
values, and options are extracted from the DOM form. Since 
in AJAX forms are usually sent to the server through 
JAVASCRIPT functions, the action attribute of the form does 
not always correspond to the server-side entry URL. Also, any 
element (e.g., A, DIV) could be used to trigger the right 
JAVASCRIPT function to submit the form. In this case, the 
crawler tries to identify the element that is responsible for 
form submission. Note that the tester can always verify the 
submit element and change it in the database, if necessary. 
Once all necessary data is gathered, the form is inserted 
automatically into the database. Every input form provides 
thus a data entry point and the tester can later alter the 
database with additional desired input values for each form. If 
the crawler does find a match in the database, the input values 
are used to fill the DOM form and submit it. Upon submission, 
the resulting state is analyzed recursively by the crawler and if 

a valid state change occurs the state-flow graph is updated 
accordingly. Testing AJAX States through Invariants with 
access to different dynamic DOM states we can check the user 
interface against different constraints. We propose to express 
those as invariants on the DOM tree, which we thus can check 
automatically in any state. We distinguish between invariants 
on the DOM-tree, between DOM-tree states, and application-
specific invariants. Each invariant is based on a fault model 
[5], representing AJAX specific faults that are likely to occur 
and which can be captured through the given invariant. 
 

II. PROPOSED APPROACH 
 
The goal of the proposed approach is to statically check web 
application invocations for correctness and detect errors. 
There are three basic steps to the approach (A) identify 
generated invocations, (B) compute interfaces and domain 
constraints, and (C) check that each invocation matches an 
interface. A. Identify Invocation Related Information The goal 
of this step is to identify invocation related information in 
each component of the web application. The information to be 
identified is: (a) the set of argument names that will be 
included in the invocation, (b) potential values for each 
argument, (c) domain information for each argument, and (d) 
the request method of the invocation. The general process of 
this step is that the approach computes the possible HTML 
pages that each component can generate. During this process, 
domain and value information is identified by tracking the 
source of each substring in the computed set of pages. Finally, 
the computed pages and substring source information are 
combined to identify the invocation information. 1) Compute 
Possible HTML Pages: The approach analyzes a web 
application to compute the HTML pages each component can 
generate. Prior work by the author [4] is extended, to compute 
these pages in such a way as to preserve domain information 
about each invocation. The approach computes the fixed point 
solution to the data-flow equations and at the end of the 
computation, the fragment associated with the root method of 
each component contains the set of possible HTML pages that 
could be generated by executing the component. 2) Identify 
Domain and Value Information: The approach identifies 
domain and value information for each argument in an 
invocation. The key insight for this part of the approach is that 
the source of the substrings used to define invocations in an 
HTML page can provide useful information about the domain 
and possible values of each argument. For example, if a 
substring used to define the value of an invocation originates 
from a call to StringBuilder.append(int), this indicates that the 
argument’s domain is of type integer. To identify this type of 
information, strings from certain types of sources are 
identified and annotated using a process similar to static 
tainting. Then the strings and their corresponding annotations 
are tracked as the approach computes the fixed point solution 
to the equations.  The mechanism for identifying and tracking 
string sources starts with the resolve function, which analyzes 
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a node n in an application and computes a conservative 
approximation of the string values that could be generated at 
that node. The general intuition is that when the resolve 
function analyzes a string source that can indicate domain or 
value information, a special domain and value (DV) function 
is used to complete the analysis. The DV function returns a 
finite state automaton (FSA) defined as the quintuple (S, S0, 
F) whose accepted language is the possible values that could 
be generated by the expression. In addition, the DV function 
also defines two domain type, where T is a basic type of 
character, integer, float, long, double, or string; and V : S that 
maps each transition to a symbol in or a special symbol  that 
denotes any value. D is used to track the inferred domain of a 
substring and V is used to track possible values. A DV 
function is defined for each general type of string source. For 
the purpose of the description of the DV functions below, e 
refers to any transition (S) defined by and the function L(e) 
returns the symbol associated with the transition e. Functions 
that return a string variable: Substrings originating from these 
types of functions can have any value and a domain of string. 
This is represented as V (e) and D(e) string. String constants: 
The string constant provides a value for the argument and a 
domain of string. This is represented as V (e) = L(e) and D(e) 
= string. Member of a collection: For example, a string 
variable defined by a specific member of a list of strings. 
More broadly, of the form v = collection hTi[x] where v is the 
string variable, collection contains objects of type T, and x 
denotes the index of the collection that defines v. In this case, 
a domain can be provided based on the type of object 
contained in the collection. This is represented as D(e) = T, 
and V (e) = collection[x] if the value is resolvable or V (e)  
otherwise. Conversion of a basic type to a string: For example, 
Integer.toString(). More broadly any function convert(X)! S 
where X is a basic type and S is a string type. This operation 
implies that the string should be a string representation of type 
X. This is represented as D(e) = X, and V (e) if X is defined 
by a variable or V (e) = L(e) otherwise. Append a basic type to 
a string: For example, a call to StringBuilder.append(int). 
More broadly, append(S,X) ! S0 where S is a string type, X is 
a basic type, and S0 is the string representation of the 
concatenation of the two arguments. In this case, the domain 
of the substring that was appended to S should be X. This is 
represented as D(eX) = X. V (eX) if X is defined by a variable 
or V (eX) = L(eX) otherwise. The subscripts denote the subset 
of transitions defined by the FSA of the string representation 
of X. 
 
3) Combining Information: The final part of identifying 
invocation related information is to combine the information 
identified by computing the HTML pages and the domain and 
value tracking. The key insight for this step is that substrings 
of the HTML pages that syntactically define an invocation’s 
value will also have annotations from the DV functions. To 
identify this information, a custom parser is used to parse each 
of the computed HTML pages and recognize HTML tags 
while maintaining and recording any annotations. Example: 

Using the equations listed in Figure 3, the Out[exitNode] of 
servlet OrderStatus is equal to {{2, 5–12, 14–17, 22}, {2, 5–
12, 19–22}. The analysis performs resolve on each of the 
nodes in each of the sets that comprise Out[exitNode]. Nodes 
2, 5, 7–12, 14, 16, 17, 19, 20, and 22 involve constants, so 
resolve returns the values of the constants and the domain 
information is any string (*). Nodes 6 and 15 originate from 
special string sources. The variable oid is defined by a 
function that returns strings and can be of any value (*), and 
the variable quant is an append of a basic type, so it is marked 
as type int. After computing the resolve function for each of 
the nodes, the final value of fragments[service] is comprised 
of two web pages, which differ only in that one traverses the 
true branch at line 13 and therefore includes an argument for 
quant and a different value for task The approach then parses 
the HTML to identify invocations. By examining the 
annotations associated with the substring that defines each 
argument’s value, the value for arguments oid and quant are 
identified. The <select> tag has three different options that can 
each supply a different value. So three copies are made of 
each of the two web form based invocations. Each copy is 
assigned one of the three possible values for the shipto 
argument. The final result is the identification of six 
invocations originating from OrderStatus. Each tuple in the 
lists -the name, domain type, and values of the identified 
argument.  
 

A. Identify Interfaces 

This step of the proposed approach identifies interface 
information for each component of a web application. The 
proposed approach extends prior work in interface analysis [5] 
to also identify the HTTP request method for each interface. 
The specific mechanism for specifying HTTP request methods 
depends on the framework. In the Java Enterprise Edition 
(JEE) framework, the name of the entry method first accessed 
specifies its expected request method. For example, the doPost 
or doGet method indicates that the POST or GET request 
methods, respectively, will be used to decode arguments. The 
proposed approach builds a call graph of the component and 
marks all methods that are reachable from the specially named 
root methods as having the request method of the originating 
method. Example: ProcessOrder can accept two interfaces due 
to the branch taken at line 17: (1) {oid, task, shipto, other} and 
(2) {oid, task, shipto, other, quant}. From the implementation 
of ProcessOrder it is possible to infer domain information for 
some of the parameters. From this information, the first 
interface is determined to have an IDC of 
int(shipto).(shipto=1_shipto=2).task=”purchase”; and the 
second interface has an IDC of 
int(shipto).(shipto=1_shipto=2).task=”modify”.int(quant).  
Unless otherwise specified, the domain of a parameter is a 
string. Lastly, by traversing the call graph of ProcessOrder all 
parameters (and therefore, all interfaces) are identified as 
having originated from a method that expects a POST request. 
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B. Verify Invocations 

The third step of the approach checks each invocation to 
ensure that it matches an interface of the invocation’s target. 
An invocation matches an interface if the following three 
conditions hold: (1) the request method of the invocation is 
equal to the request method of the interface; (2) the set of the 
interface’s parameter names and the invocation’s argument 
names are equal; and (3) the domains and values of the 
invocation satisfy an IDC of the interface. For the third 
condition, domain and value constraints are checked. The 
domain of an argument is considered to match the domain of a 
parameter if both are of the same type or if the value of the 
argument can be successfully converted to the corresponding 
parameter’s domain type. For example, if the parameter 
domain constraint is Integer and the argument value is “5,” 
then the constraint would be satisfied. Example: Consider the 
interfaces identified and the invocations. Each of the six 
invocations is checked to see if it matches either of the two 
interfaces. Only invocation 2 represents a correct invocation 
and the rest will be identified as errors. 
 

C. Evaluation 

The evaluation measures the precision of the reported results. 
The proposed approach was implemented as a prototype tool, 
WAIVE+. The subjects used in the evaluation are four Java 
Enterprise Edition (JEE) based web applications: Bookstore, 
Daffodil, Filelister, and JWMA. These applications range in 
size from 8,600 to 29,000 lines of code. All of the applications 
are available as open source and are implemented using a mix 
of static HTML, JavaScript, Java servlets, and regular Java 
code. To address the research questions, WAIVE+ was run on 
the four applications. For each application the reported 
invocation errors were inspected. Table II shows the results of 
inspecting the reported invocations. Each invocation error was 
classified as either a confirmed error or a false positive. 
Invocations in both classifications were also further classified 
based on whether the error reported was due to a violation of 
one of the correctness properties, the invocation did not match 
an interface because of an incorrectly specified request 
method (R.M.), the argument names did not match the 
parameter names of any interface of the target (N.), and the 
value and domain information of an invocation did not match 
the interface domain constraint (IDC). The table also reports 
the total number of invocations identified for each application 
(# Invk.). As the results in Table II show, WAIVE+ identified 
69 erroneous invocations and had 20 false positives. Prior 
approaches can only detect errors related to names, so the 
comparable total of errors for WAIVE was 33 erroneous 
invocations and 19 false positives. These results indicate that 
the new domain information checks resulted in the discovery 
of 36 additional errors and 1 false positive. Overall, the results 
are very encouraging. The approach identified 36 new errors 
that had been previously undetectable while only producing 
one additional false positive. 
 

III. CONCURRENT AJAX CRAWLING 
 
The algorithm and its implementation for crawling AJAX, as 
just described, is sequential, depth-first, and single-threaded. 
Since we crawl the Web application dynamically, the crawling 
runtime is determined by the following factors. 
(1) The speed at which the Web server responds to HTTP 
requests. 
(2) Network latency. 
(3) The crawler’s internal processes (e.g., analyzing the DOM, 
firing events, updating the state machine). 
(4) The speed of the browser in handling the events and 
request/response pairs, modifying the DOM, and rendering the 
user interface. 
We have no influence on the first two factors and already have 
many optimization heuristics for the third step. Therefore, we 
focus on the last factor, the browser. Since the algorithm has 
to wait some considerable amount of time for the browser to 
finish its tasks after each event, our hypothesis is that we can 
decrease the total runtime by adopting concurrent crawling 
through multiple browsers. 
 

A. Multi-threaded, Multi-Browser Crawling 

The idea is to maintain a single state machine and split the 
original controller into a new controller and multiple crawling 
nodes. The controller is the single main thread monitoring the 
total crawl procedure. In this new setting, each crawling node 
is responsible for deriving its corresponding robot and browser 
instances to crawl a specific path. Compared with Figure 3, 
the new architecture is capable of having multiple crawler 
instances, running from a single controller. All the crawlers 
share the same state machine. The state machine makes sure 
every crawler can read and update the state machine in a 
synchronized way. This way, the operation of discovering new 
states can be executed in parallel. 
 

B. Partition Function 

To divide the work over the crawlers in a multi-threaded 
manner, a partition function must be designed. The 
performance of a concurrent approach is determined by the 
quality of its partition function [Garavel et al. 2001]. A 
partition function can be either static or dynamic. With a static 
partition function, the division of work is known in advance, 
before executing the code. When a dynamic partition function 
is used, the decision of which thread will execute a given node 
is made at runtime. Our algorithm infers the state-flow graph 
of an AJAX application dynamically and incrementally. Thus, 
due to this dynamic nature, we adopt a dynamic partition 
function. The task of our dynamic partition function is to 
distribute the work equally over all the participating crawling 
nodes. While crawling an AJAX application, we define work 
as bringing the browser back into a given state and exploring 
the first unexplored candidate state from that state. Our 
proposed partition function operates as follows. After the 
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discovery of a new state, if there are still unexplored candidate 
clickables left in the previous state, that state is assigned to 
another thread for further exploration. The processor chosen 
will be the one with the least amount of work left. Visualizes 
our partition function for concurrent crawling of a simple Web 
application. In the Index state, two candidate clickables are 
detected that can lead: S 1 and S 11. The initial thread 
continues with the exploration of the states S 1, S 2, S 3, S 4, 
and finishes in S 5, in a depth-first manner. Simultaneously, a 
new thread is branched off to explore state S 11. This new 
thread (thread #2) first reloads the browser to Index and then 
goes into S 11. In state S 2 and S 6, this same branching 
mechanism happens, which results in a total of five threads. 
Now that the partition function has been introduced, the 
original sequential crawling algorithm (Algorithm 1) can be 
changed into a concurrent version. 
 
We consider the following Ajax Complexity field equations 
defined over an open bounded piece of network and /or feature 

space dRΩ ⊂ . They describe the dynamics of the mean 
anycast of each of p node populations. 

|
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We give an interpretation of the various parameters and 
functions that appear in (1),Ω  is finite piece of nodes and/or 
feature space and is represented as an open bounded set of 

dR . The vector r  and r  represent points in  Ω . The 
function : (0,1)S R→  is the normalized sigmoid function: 

  
1

( ) (2)
1 z

S z
e−=

+
  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, for 

example, [ ( )].i i i i iV v S V hσ= = −  We note V  the p −  

dimensional vector 1( ,..., ).pV V The p  function 

, 1,..., ,i i pφ =  represent the initial conditions, see below. We 

note φ  the  p −  dimensional vector 1( ,..., ).pφ φ  The p  

function , 1,..., ,ext
iI i p=  represent external factors from 

other network areas. We note extI  the p −  dimensional 

vector 1( ,..., ).ext ext
pI I The p p×  matrix of functions 

, 1,...,{ }ij i j pJ J ==  represents the connectivity between 

populations i  and ,j  see below. The p  real values 

, 1,..., ,ih i p=  determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The p real 

positive values , 1,..., ,i i pσ =  determine the slopes of the 

sigmoids at the origin. Finally the p real positive values 

, 1,..., ,il i p=   determine the speed at which each anycast 

node potential decreases exponentially toward its real value. 

We also introduce the function : ,p pS R R→  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S hσ σ= − −  and the 

diagonal p p×  matrix 0 1( ,..., ).pL diag l l= Is the intrinsic 

dynamics of the population given by the linear response of 

data transfer. ( )i

d
l

dt
+  is replaced by 2( )i

d
l

dt
+  to use the 

alpha function response. We use ( )i

d
l

dt
+  for simplicity 

although our analysis applies to more general intrinsic 
dynamics. For the sake, of generality, the propagation delays 
are not assumed to be identical for all populations, hence they 

are described by a matrix ( , )r rτ  whose element ( , )ij r rτ is 

the propagation delay between population j  at r  and 

population i  at .r  The reason for this assumption is that it is 
still unclear from anycast if propagation delays are 
independent of the populations. We assume for technical 

reasons that τ  is continuous, that is 
20( , ).p pC Rτ ×

+∈ Ω  

Moreover packet data indicate that τ  is not a symmetric 

function i.e., ( , ) ( , ),ij ijr r r rτ τ≠  thus no assumption is 

made about this symmetry unless otherwise stated. In order to 
compute the righthand side of (1), we need to know the node 
potential factor V  on interval [ , 0].T−  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )
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=   

Hence we choose mT τ=  

 

C. Mathematical Framework 

A convenient functional setting for the non-delayed packet 

field equations is to use the space 2( , )pF L R= Ω  which is a 

Hilbert space endowed with the usual inner product: 
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To give a meaning to (1), we defined the history space 
0([ ,0], )mC C Fτ= −  with [ ,0]sup ( ) ,

mt t Fτφ φ∈ −=  

which is the Banach phase space associated with equation (3). 

Using the notation ( ) ( ), [ ,0],t mV V tθ θ θ τ= + ∈ −  we 

write (1) as  
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Proposition 1.0  If the following assumptions are satisfied. 

1. 2 2( , ),p pJ L R ×∈ Ω   

2. The external current 0( , ),extI C R F∈   

3. 2
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Then for any ,Cφ ∈  there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C Fτ∈ ∞ ∩ − ∞  to (3) 

Notice that this result gives existence on ,R+  finite-time 

explosion is impossible for this delayed differential equation. 
Nevertheless, a particular solution could grow indefinitely, we 
now prove that this cannot happen. 
 

D. Boundedness of Solutions 

A valid model of neural networks should only feature bounded 
packet node potentials.  
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Let us show that the open route of F  of center 0 and radius 

, ,RR B  is stable under the dynamics of equation. We know 

that ( )V t  is defined for all 0t s≥  and that 0f <  on ,RB∂  

the boundary of RB . We consider three cases for the initial 

condition 0.V If 0 C
V R<  and set 
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because  RB is closed, in effect to ,RB∂  we also have 
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implies that 0, ( ) Rt V t B∀ > ∈ . Finally we consider the case 
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Proposition 1.1 : Let s and t   be measured simple functions 
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Also, ( ) 0,ϕ φ =  so that ϕ  is not identically∞ . 
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and ( ) ( )
ij ij

i ij j ijE E
sd td E Eµ µ α µ β µ+ = +∫ ∫   Thus (2) 

holds with ijE  in place of X . Since  X is the disjoint union 

of the sets (1 ,1 ),ijE i n j m≤ ≤ ≤ ≤  the first half of our 

proposition implies that (2) holds. 
 
 
Theorem 1.1: If K  is a compact set in the plane whose 
complement is connected, if f  is a continuous complex 

function on K  which is holomorphic in the interior of , and if 
0,ε >  then there exists a polynomial P  such that 

( ) ( )f z P z ε= <  for all z Kε .  If the interior of K is 

empty, then part of the hypothesis is vacuously satisfied, and 
the conclusion holds for every ( )f C Kε . Note that  K need 

to be connected. 
Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact support. We 
fix one such extension and denote it again by f . For any 

0,δ >  let ( )ω δ  be the supremum of the numbers 
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condition 2 1z z δ− ≤ . Since f  is uniformly continous, we 
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Where X  is the set of all points in the support of Φ  whose 
distance from the complement of K  does not δ . (Thus  X
contains no point which is “far within” K .) We construct Φ
as the convolution of f  with a smoothing function A. Put 
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=

∂ =

∂ = <

∫∫

∫∫

∫∫

    

 
The constants are so adjusted in (6) that (8) holds.  (Compute 
the integral in polar coordinates), (9) holds simply because A  
has compact support. To compute (10), express A∂  in polar 

coordinates, and note that 0,A
θ

∂ =∂   

 

',A ar
∂ = −∂  

Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d dζ ξ η ζ ζ ξ ηΦ = − = −∫∫ ∫∫
  

Since f  and A  have compact support, so does Φ . Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d dζ ξ ξ η

Φ −

= − −∫∫  

And ( ) 0A ζ =  if ,ζ δ>   (3) follows from (8). The 

difference quotients of A  converge boundedly to the 

corresponding partial derivatives, since ' 2( )cA C Rε . Hence 

the last expression in (11) may be differentiated under the 
integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

ζ ζ ξ η

ζ ζ ξ η

ζ ζ ξ η

∂Φ = ∂ −

= − ∂

= − − ∂

∫∫

∫∫

∫∫

   

The last equality depends on (9). Now (10) and (13) give (4). 

If we write (13) with xΦ  and yΦ  in place of ,∂Φ  we see 

that Φ  has continuous partial derivatives, if we can show that 
0∂Φ =  in ,G  where G  is the set of all z Kε  whose 

distance from the complement of K  exceeds .δ  We shall do 
this by showing that  
 ( ) ( ) ( ); (14)z f z z GεΦ =   

Note that 0f∂ =  in G , since f  is holomorphic there. Now 

if ,z Gε  then z ζ−  is in the interior of K  for all ζ  with 
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.ζ δ<  The mean value property for harmonic functions 

therefore gives, by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

δ π θ

δ

θ

π

Φ = −

= = =

∫ ∫

∫ ∫∫
  

For all z Gε  , we have now proved (3), (4), and (5) The 

definition of X  shows that X is compact and that X  can be 

covered by finitely many open discs 1,..., ,nD D  of radius 

2 ,δ  whose centers are not in .K  Since 2S K−  is 

connected, the center of each jD  can be joined to ∞  by a 

polygonal path in 2S K− . It follows that each jD contains a 

compact connected set ,jE  of diameter at least 2 ,δ  so that 

2
jS E−  is connected and so that .jK E φ∩ =   with 

2r δ= . There are functions 2( )j jg H S Eε −  and constants 

jb  so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z

ζ
δ

δζ
ζ ζ

<

− <
− −

   

Hold for jz E∉  and ,jDζ ∈  if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g zζ ζ= + −   

Let Ω  be the complement of 1 ... .nE E∪ ∪  Then Ω is an 

open set which contains .K  Put 1 1X X D= ∩  and 

1 1( ) ( ... ),j j jX X D X X −= ∩ − ∪ ∪  for 2 ,j n≤ ≤   

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X zζ ζ ζε ε= Ω   

And 
1

( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

ζ ζ ζ η
π

ε

= ∂ Φ

Ω

∫∫   

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j
j X

F z Q z d dζ ζ ξ η
π=

= ∂Φ∑ ∫∫   

(18) shows that F  is a finite linear combination of the 

functions jg  and 2
jg . Hence ( ).F Hε Ω  By (20), (4), and 

(5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

ω δ ζ
πδ

ξ η ε
ζ

− Φ <

− Ω
−

∫∫
  

Observe that the inequalities (16) and (17) are valid with R  in 

place of jQ  if Xζ ε  and .z ε Ω Now fix  .z ε Ω , put 

,iz eθζ ρ= +  and estimate the integrand in (22) by (16) if 

4 ,ρ δ<  by (17) if 4 .δ ρ≤   The integral in (22) is then 

seen to be less than the sum of 

4

0

50 1
2 808 (23)d

δ
π ρ ρ πδ

δ ρ
 + = 
 

∫   

And  
2

24

4,000
2 2,000 . (24)d

δ

δπ ρ ρ πδ
ρ

∞
=∫   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z zω δ ε− Φ < Ω   

Since ( ), ,F H Kε Ω ⊂ Ω  and 2S K−  is connected, 

Runge’s theorem shows that F  can be uniformly 
approximated on K  by polynomials. Hence (3) and (25) show 
that (2) can be satisfied. This completes the proof. 
 

Lemma 1.0 : Suppose ' 2( ),cf C Rε  the space of all 

continuously differentiable functions in the plane, with 
compact support. Put  

1
(1)

2
i

x y

 ∂ ∂∂ = + ∂ ∂ 
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)
R

f
f z d d

z

i

ζ ξ η
π ζ

ζ ξ η

∂= −
−

= +

∫∫
  

Proof: This may be deduced from Green’s theorem. However, 
here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re rθϕ θ θ= + >  real 

 If ,iz reθζ = +  the chain rule gives 

1
( )( ) ( , ) (3)

2
i i

f e r
r r

θζ ϕ θ
θ

∂ ∂ ∂ = + ∂ ∂ 
  

The right side of (2) is therefore equal to the limit, as 0,ε →  

of 

 
2

0

1
(4)

2

i
d dr

r r

π

ε

ϕ ϕ θ
θ

∞ ∂ ∂ − + ∂ ∂ 
∫ ∫
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For each 0,r ϕ>  is periodic in ,θ  with period 2π . The 

integral of /ϕ θ∂ ∂  is therefore 0, and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

π π

ε

ϕθ ϕ ε θ θ
π π

∞ ∂− =
∂∫ ∫ ∫   

As 0, ( , ) ( )f zε ϕ ε θ→ →  uniformly.  This gives (2)  

 

If X aα ∈  and [ ]1,... nX k X Xβ ∈ , then 

X X X aα β α β+= ∈  , and so A  satisfies the condition ( )∗ . 

Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finitesumsα β α β
α β α β

α α ββ

+

∈ ∈

=∑ ∑ ∑
�

  

and so if A  satisfies ( )∗ , then the subspace generated by the 

monomials ,X aα α ∈ , is an ideal. The proposition gives a 

classification of the monomial ideals in [ ]1,... nk X X : they 

are in one to one correspondence with the subsets A  of 
n�  

satisfying ( )∗ . For example, the monomial ideals in [ ]k X  

are exactly the ideals ( ), 1nX n≥ , and the zero ideal 

(corresponding to the empty setA ). We write |X Aα α ∈  

for the ideal corresponding to A  (subspace generated by the 

,X aα α ∈ ). 

 

LEMMA 1.1.  Let S  be a subset of 
n� . The the ideal a  

generated by ,X Sα α ∈  is the monomial ideal 

corresponding to   

{ }| ,
df

n nA some Sβ β α α∈ − ∈ ∈= � �   

Thus, a monomial is in a  if and only if it is divisible by one 

of the , |X Sα α ∈  

PROOF.   Clearly A  satisfies ( )∗ , and |a X Aβ β⊂ ∈ . 

Conversely, if Aβ ∈ , then 
nβ α− ∈�  for some Sα ∈ , 

and X X X aβ α β α−= ∈ . The last statement follows from 

the fact that | nX Xα β β α⇔ − ∈� . Let 
nA⊂ �  satisfy 

( )∗ . From the geometry of  A , it is clear that there is a finite 

set of elements { }1,... sS α α=   of A such that  

{ }2| ,n
i iA some Sβ β α α= ∈ − ∈ ∈� �  (The 'i sα  

are the corners of A ) Moreover, |
df

a X Aα α ∈=  is 

generated by the monomials ,i
iX Sα α ∈ . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

[ ]1 ,..., nk X X , we let ( ( ))LT a  be the ideal generated by  

{ }( ) |LT f f a∈   

 

LEMMA 1.2   Let a  be a nonzero ideal in  [ ]1 ,..., nk X X ; 

then ( ( ))LT a is a monomial ideal, and it equals 

1( ( ),..., ( ))nLT g LT g  for some 1,..., ng g a∈ . 

PROOF.   Since  ( ( ))LT a  can also be described as the ideal 

generated by the leading monomials (rather than the leading 
terms) of elements of a . 
 

THEOREM 1.2.  Every ideal a  in [ ]1 ,..., nk X X is 

finitely generated; more precisely, 1( ,..., )sa g g=  where 

1,..., sg g are any elements of a  whose leading terms 

generate ( )LT a   

PROOF.   Let f a∈ . On applying the division algorithm, 

we find 

[ ]1 1 1... , , ,...,s s i nf a g a g r a r k X X= + + + ∈  , 

where either 0r =  or no monomial occurring in it is divisible 

by any ( )iLT g . But i i
r f a g a= − ∈∑ , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g∈ = , implies that 

every monomial occurring in r  is divisible by one in 

( )iLT g . Thus 0r = , and 1( ,..., )sg g g∈ . 

 

DEFINITION 1.1.   A finite subset { }1,| ..., sS g g=  of an 

ideal a  is a standard (
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a= . In other words, S is a 

standard basis if the leading term of every element of a is 

divisible by at least one of the leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is Noetherian i.e., 

every ideal is finitely generated. 
 

PROOF. For  1,n =  [ ]k X  is a principal ideal domain, 

which means that every ideal is generated by single element. 
We shall prove the theorem by induction on n . Note that the 

obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X− →  is an 

isomorphism – this simply says that every polynomial f  in 

n  variables 1,... nX X  can be expressed uniquely as a 

polynomial in nX  with coefficients in 1[ ,..., ]nk X X : 
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1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X− −= + +   

Thus the next lemma will complete the proof 
 

LEMMA 1.3.  If A is Noetherian, then so also is [ ]A X   

PROOF.          For a polynomial 
 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a−= + + + ∈ ≠   

r  is called the degree of f , and 0a  is its leading coefficient. 

We call 0 the leading coefficient of the polynomial 0. 
 Let a  be an ideal in [ ]A X . The leading coefficients 

of the polynomials in a  form an ideal 
'a  in A,  and since A 

is Noetherian, 
'a will be finitely generated. Let 1,..., mg g  be 

elements of a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a∈  and 

suppose f  has degree s r> , say, ...sf aX= +  Then 
'a a∈  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

= ∈

=
∑

  

Now 

, deg( ),is r

i i i if b g X r g
−− =∑ has degree deg( )f<  . 

By continuing in this way, we find that 

1mod( ,... )t mf f g g≡  With tf  a polynomial of 

degree t r< . For each d r< , let da  be the subset of A 

consisting of 0 and the leading coefficients of all polynomials 

in a  of degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose leading 

coefficients generate da . Then the same argument as above 

shows that any polynomial df  in a  of degree d  can be 

written 1 ,1 ,mod( ,... )
dd d d d mf f g g−≡  With 1df −  of 

degree 1d≤ − . On applying this remark repeatedly we find 

that 
1 01,1 1, 0,1 0,( ,... ,... ,... )

rt r r m mf g g g g
−− −∈  Hence 

       
1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )

rt m r r m mf g g g g g g
−− −∈  

 and so the polynomials 
01 0,,..., mg g  generate a   

 
One of the great successes of category theory in computer 
science has been the development of a “unified theory” of the 
constructions underlying denotational semantics. In the 
untyped λ -calculus,  any term may appear in the function 
position of an application. This means that a model D of the 
λ -calculus must have the property that given a term t  whose 

interpretation is ,d D∈  Also, the interpretation of a 

functional abstraction like xλ . x  is most conveniently 

defined as a function from Dto D  , which must then be 

regarded as an element of D. Let [ ]: D D Dψ → →  be the 

function that picks out elements of D to  represent elements of 

[ ]D D→  and [ ]: D D Dφ → →  be the function that 

maps elements of D to functions of D.  Since ( )fψ  is 

intended to represent the function f  as an element of D, it 

makes sense to require that ( ( )) ,f fφ ψ =  that is, 

[ ]D Do idψ ψ →=   Furthermore, we often want to view every 

element of D as representing some function from D to D and 
require that elements representing the same function be equal 
– that is   

( ( ))

D

d d

or

o id

ψ ϕ

ψ φ

=

=
  

The latter condition is called extensionality. These conditions 

together imply that andφ ψ  are inverses--- that is, D is 

isomorphic to the space of functions from D to D  that can be 

the interpretations of functional abstractions: [ ]D D D≅ →  

.Let us suppose we are working with the untyped 
calculusλ − , we need a solution ot the equation 

[ ],D A D D≅ + →  where A is some predetermined 

domain containing interpretations for elements of C.  Each 
element of D corresponds to either an element of A or an 

element of [ ],D D→  with a tag. This equation can be 

solved by finding least fixed points of the function 

[ ]( )F X A X X= + →  from domains to domains --- that 

is, finding domains X  such that [ ],X A X X≅ + →  and 

such that for any domain Y also satisfying this equation, there 
is an embedding of X to Y  --- a pair of maps 

R

f

f

X Y�   

Such that   
R

X

R
Y

f o f id

f o f id

=

⊆
  

Where f g⊆  means that f approximates g in some 

ordering representing their information content. The key shift 
of perspective from the domain-theoretic to the more general 
category-theoretic approach lies in considering F not as a 
function on domains, but as a functor on a category of 
domains. Instead of a least fixed point of the function, F. 
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Definition 1.3: Let K be a category and :F K K→  as a 
functor. A fixed point of F is a pair (A,a), where A is a K-
object and : ( )a F A A→  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and a is any 
arrow from F(A) to A 
Definition 1.4 : An chainω −  in a category K  is a diagram 
of the following form: 

1 2

1 2 .....
of f f

oD D D∆ = → → →   
Recall that a cocone µ  of an chainω − ∆  is a K-object X 

and a collection of K –arrows { }: | 0i iD X iµ → ≥  such 

that 1i i io fµ µ +=  for all 0i ≥ . We sometimes write 

: Xµ ∆ →  as a reminder of the arrangement of 'sµ  

components Similarly, a colimit : Xµ ∆ → is a cocone with 

the property that if 
': Xν ∆ →  is also a cocone then there 

exists a unique mediating arrow 
':k X X→  such that for all 

0,, i ii v k oµ≥ = . Colimits of chainsω −  are sometimes 

referred to as limco itsω − . Dually, an 
op chainω −  in K 

is a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D∆ = ← ← ←
 
A cone : Xµ → ∆  of an 

op chainω − ∆  is a K-object X and a collection of K-arrows 

{ }: | 0i iD iµ ≥  such that for all 10, i i ii f oµ µ +≥ = . An  

opω -limit of an 
op chainω −  ∆  is a cone : Xµ → ∆  

with the property that if 
': Xν → ∆ is also a cone, then there 

exists a unique mediating arrow 
':k X X→  such that for 

all 0, i ii okµ ν≥ =  . We write k⊥  (or just ⊥ ) for the 

distinguish initial object of K, when it has one, and A⊥→  
for the unique arrow from ⊥  to each K-object A. It is also 

convenient to write 
1 2

1 2 .....
f f

D D−∆ = → → to denote all of 

∆  except oD  and 0f . By analogy, µ −
 is { }| 1i iµ ≥ . For 

the images of ∆  and µ  under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D∆ = → → →  

and { }( ) ( ) | 0iF F iµ µ= ≥   

We write iF  for the i-fold iterated composition of F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f= = =  ,etc. 

With these definitions we can state that every monitonic 
function on a complete lattice has a least fixed point: 
 

Lemma 1.4. Let K  be a category with initial object ⊥  and let 

:F K K→  be a functor. Define the chainω − ∆  by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
⊥→ ⊥ ⊥→ ⊥ ⊥→ ⊥

∆ =⊥ ⊥ ⊥→ → →   

If both : Dµ ∆ →  and ( ) : ( ) ( )F F F Dµ ∆ → are 

colimits, then (D,d) is an intial F-algebra, where
: ( )d F D D→   is the mediating arrow from ( )F µ   to the 

cocone µ −

  

 
 
Theorem 1.4 Let a DAG G given in which each node is a 
random variable, and let a discrete conditional probability 
distribution of each node given values of its parents in G be 
specified. Then the product of these conditional distributions 
yields a joint probability distribution P of the variables, and 
(G,P) satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral ordering. Let 

1 2, ,........ nX X X be the resultant ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),
n n n n nP x x x P x pa P x Pa

P x pa P x pa
− −=

 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a joint 

probability distribution. Clearly, 1 20 ( , ,... ) 1nP x x x≤ ≤  for 

all values of the variables. Therefore, to show we have a joint 
distribution, as the variables range through all their possible 
values, is equal to one. To that end, Specified conditional 
distributions are the conditional distributions they notationally 
represent in the joint distribution. Finally, we show the 
Markov condition is satisfied. To do this, we need show for 
1 k n≤ ≤  that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

≠ ≠
≠
=

 

Where kND is the set of nondescendents of kX of in G. 

Since k kPA ND⊆ , we need only show 

( | ) ( | )k k k kP x nd P x pa= . First for a given k , order the 

nodes so that all and only nondescendents of kX precede kX

in the ordering. Note that this ordering depends on k , whereas 
the ordering in the first part of the proof does not. Clearly then 
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{ }

{ }

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X

−

+ +

=

=
 

follows 
kd∑    

 
 

We define the 
thm cyclotomic field to be the field 

[ ] / ( ( ))mQ x xΦ
 
Where ( )m xΦ is the 

thm cyclotomic 

polynomial. [ ] / ( ( ))mQ x xΦ  ( )m xΦ  has degree ( )mϕ
over Q since ( )m xΦ has degree ( )mϕ . The roots of 

( )m xΦ  are just the primitive 
thm roots of unity, so the 

complex embeddings of [ ] / ( ( ))mQ x xΦ are simply the 

( )mϕ maps  

[ ]: / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C

k m k m where

x

σ

σ ξ

Φ
≤ =

=

a

p  

mξ being our fixed choice of primitive 
thm root of unity. Note 

that ( )k
m mQξ ξ∈ for every ;k it follows that 

( ) ( )k
m mQ Qξ ξ= for all k relatively prime to m . In 

particular, the images of the iσ coincide, so 

[ ] / ( ( ))mQ x xΦ is Galois over Q. This means that we can 

write ( )mQ ξ for [ ] / ( ( ))mQ x xΦ without much fear of 

ambiguity; we will do so from now on, the identification being 

.m xξ a One advantage of this is that one can easily talk 

about cyclotomic fields being extensions of one another,or 
intersections or compositums; all of these things take place 
considering them as subfield of .C  We now investigate some 
basic properties of cyclotomic fields. The first issue is whether 
or not they are all distinct; to determine this, we need to know 

which roots of unity lie in ( )mQ ξ .Note, for example, that if 

mis odd, then mξ− is a 2 thm root of unity. We will show that 

this is the only way in which one can obtain any non-
thm

roots of unity. 
 

LEMMA 1.5   If mdividesn , then ( )mQ ξ  is contained in 

( )nQ ξ  

PROOF. Since ,
n

m
mξ ξ= we have ( ),m nQξ ξ∈ so the 

result is clear 

 
LEMMA 1.6   If mand nare relatively prime, then  

  ( , ) ( )m n nmQ Qξ ξ ξ=  

and 

           ( ) ( )m nQ Q Qξ ξ∩ =  

(Recall the ( , )m nQ ξ ξ  is the compositum of 

( ) ( ) )m nQ and Qξ ξ  

 

PROOF. One checks easily that m nξ ξ is a primitive 
thmn root 

of unity, so that  

( ) ( , )mn m nQ Qξ ξ ξ⊆  

[ ] [ ][ ]( , ) : ( ) : ( :

( ) ( ) ( );
m n m nQ Q Q Q Q Q

m n mn

ξ ξ ξ ξ
ϕ ϕ ϕ

≤
= =

 

Since [ ]( ) : ( );mnQ Q mnξ ϕ= this implies that 

( , ) ( )m n nmQ Qξ ξ ξ=
 
We know that ( , )m nQ ξ ξ has degree 

( )mnϕ  over  Q, so we must have 

 [ ]( , ) : ( ) ( )m n mQ Q nξ ξ ξ ϕ=  

and 

[ ]( , ) : ( ) ( )m n mQ Q mξ ξ ξ ϕ=  

 

[ ]( ) : ( ) ( ) ( )m m nQ Q Q mξ ξ ξ ϕ∩ ≥  

And thus that ( ) ( )m nQ Q Qξ ξ∩ =  

 
PROPOSITION 1.2 For any mand n  

 

[ ],( , ) ( )m n m nQ Qξ ξ ξ=  

And  

( , )( ) ( ) ( );m n m nQ Q Qξ ξ ξ∩ =  

here [ ],m n and ( ),m n denote the least common multiple and 

the greatest common divisor of mand ,n respectively. 

 

PROOF.    Write 1 1
1 1...... ....k ke fe f

k km p p and p p= where the 

ip are distinct primes. (We allow i ie or f to be zero) 
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1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

=

=

=

=

=

[ ]

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q

ξ

ξ

=

=

 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Qξ ξ ξ∩ =
 

 
Mutual information measures the information transferred 

when ix  is sent and iy  is received, and is defined as 

2

( )
( , ) log (1)

( )

i

i
i i

i

xP y
I x y bits

P x
=  

In a noise-free channel, each iy is uniquely connected to the 

corresponding ix  , and so they constitute an input –output pair 

( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

xP and I x yy P x
= = bits; that is, the 

transferred information is equal to the self-information that 

corresponds to the input ix  
In a very noisy channel, the output 

iy and input ix would be completely uncorrelated, and so 

( ) ( )i
i

j

xP P xy =  and also ( , ) 0;i jI x y = that is, there is no 

transference of information. In general, a given channel will 
operate between these two extremes. The mutual information 
is defined between the input and the output of a given channel. 
An average of the calculation of the mutual information for all 
input-output pairs of a given channel is the average mutual 
information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

= =  
 
 

∑ ∑
 bits per 

symbol . This calculation is done over the input and output 
alphabets. The average mutual information. The following 
expressions are useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x

y
P y P P xx

xP x P P yy

= =

=

=

∑

∑

 

Then 

.

2
.

2
.

2
.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y
xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y

=

 
=  

 

 
 

−  
 
 

 
 
 

 =   

=

= −

∑

∑

∑

∑

∑

∑

 

Where 2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x yY xP y

=∑  is 

usually called the equivocation. In a sense, the equivocation 
can be seen as the information lost in the noisy channel, and is 
a function of the backward conditional probability. The 

observation of an output symbol jy provides 

( ) ( )XH X H Y−  bits of information. This difference is the 

mutual information of the channel. Mutual Information: 
Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x=  

The mutual information fits the condition 
( , ) ( , )I X Y I Y X=  

And by interchanging input and output it is also true that 

( , ) ( ) ( )YI X Y H Y H X= −  

Where 
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2

1
( ) ( ) log

( )j
j j

H Y P y
P y

=∑  

This last entropy is usually called the noise entropy. Thus, the 
information transferred through the channel is the difference 
between the output entropy and the noise entropy. 
Alternatively, it can be said that the channel mutual 
information is the difference between the number of bits 
needed for determining a given input symbol before knowing 
the corresponding output symbol, and the number of bits 
needed for determining a given input symbol after knowing 
the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y= −  

As the channel mutual information expression is a difference 
between two quantities, it seems that this parameter can adopt 
negative values. However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is not 

possible for the average value calculated over all the outputs: 

2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
=∑ ∑  

Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
− = ≤∑  

Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

Q
P

P=
≤∑  

The above expression can be applied due to the factor 

( ) ( ),i jP x P y which is the product of two probabilities, so 

that it behaves as the quantity iQ , which in this expression is 

a dummy variable that fits the condition 1ii
Q ≤∑ . It can be 

concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input 
and the output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y

=

=

+

∑

∑

∑

 

 
 
Theorem 1.5: Entropies of the binary erasure channel (BEC) 
The BEC is defined with an alphabet of two inputs and three 
outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P xα α= = − and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x

yand P x

yand P px

yand P px

= − =

=

=

= −

 

 
Lemma 1.7. Given an arbitrary restricted time-discrete, 
amplitude-continuous channel whose restrictions are 

determined by sets nF and whose density functions exhibit no 

dependence on the states , let n be a fixed positive integer, 

and ( )p x an arbitrary probability density function on 

Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any real 

number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
= > 
 

 

Then for each positive integeru , there is a code ( , , )u n λ
such that 

{ } { }( , ) (2)aue P X Y A P X Fλ −≤ + ∉ + ∉  

Where 
{ }

{ }

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

∈ = =

∈ =

∫ ∫

∫ ∫

 

Proof: A sequence 
(1)x F∈ such that 

{ }
{ }

1
(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A

ε

ε

∈ = ≥ −

=
 

Choose the decoding set 1B to be (1)x
A . Having chosen 

(1) ( 1),........, kx x −
and 1 1,..., kB B − , select 

kx F∈ such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x ε
−

=

 ∈ − = ≥ − 
 

U
 

 

Set ( )

1

1k

k

k ix i
B A B

−

=
= −U , If the process does not terminate 

in a finite number of steps, then the sequences 
( )ix and 

decoding sets , 1,2,..., ,iB i u= form the desired code. Thus 

assume that the process terminates after t  steps. (Conceivably 
0t = ). We will show t u≥  by showing that  

{ } { }( , )ate P X Y A P X Fε −≤ + ∉ + ∉ . We proceed as 

follows.  
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Let 

{ }
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x

φ
=

∈

∈

∈ ∩

= = =

∈ =

=

= +

∫

∫ ∫

∫ ∫ ∫

U

 
 
 

E. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A is a 
subset such that a is subgroup of A regarded as a group under 
addition; 

 ,a a r A ra A∈ ∈ ⇒ ∈    
The ideal generated by a subset S of A is the intersection of all 
ideals A containing a ----- it is easy to verify that this is in fact 
an ideal, and that it consist of all finite sums of the form 

i i
rs∑  with ,i ir A s S∈ ∈ . When { }1,....., mS s s= , we 

shall write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set { }| ,a b a a b b+ ∈ ∈  is 

an ideal, denoted by a b+ . The ideal generated by  

{ }| ,ab a a b b∈ ∈ is denoted by ab . Note that 

ab a b⊂ ∩ . Clearly abconsists of all finite sums i i
a b∑  

with ia a∈  and ib b∈ , and if 1( ,..., )ma a a=  and 

1( ,..., )nb b b= , then 1 1( ,..., ,..., )i j m nab a b a b a b= .Let a  

be an ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a+a  is a homomorphism : /A A aφ a . 

The map 
1( )b bφ−a  is a one to one correspondence 

between the ideals of /A a  and the ideals of A  containinga
An ideal p  if prime if p A≠  and ab p a p∈ ⇒ ∈  or 

b p∈ . Thus p  is prime if and only if /A p  is nonzero and 

has the property that  0, 0 0,ab b a= ≠ ⇒ =   i.e., 

/A p is an integral domain. An ideal m  is maximal if 

|m A≠  and there does not exist an ideal n  contained strictly 

between mand A . Thus mis maximal if and only if /A m 
has no proper nonzero ideals, and so is a field. Note that m 
maximal ⇒  mprime. The ideals of A B×  are all of the 
form a b× , with a  and b  ideals in A  and B . To see this, 

note that if c  is an ideal in  A B×  and ( , )a b c∈ , then 

( ,0) ( , )(1,0)a a b c= ∈  and (0, ) ( , )(0,1)b a b c= ∈ . This 

shows that c a b= ×  with  

{ }| ( , )a a a b c some b b= ∈ ∈
  

and  

  
{ }| ( , )b b a b c some a a= ∈ ∈

 
 

Let A  be a ring. An A -algebra is a ring B  together with a 

homomorphism :Bi A B→ . A homomorphism of A -algebra 

B C→  is a homomorphism of rings : B Cϕ →  such that 

( ( )) ( )B Ci a i aϕ =  for all . An  A -algebra B is said 

to be finitely generated ( or of finite-type over A) if there exist 

elements 1,..., nx x B∈  such that every element of B can be 

expressed as a polynomial in the ix  with coefficients in ( )i A

, i.e., such that the homomorphism [ ]1,..., nA X X B→  

sending iX  to  ix is surjective.  A ring homomorphism 

A B→  is finite, and B  is finitely generated as an A-

module. Let k  be a field, and let Abe a k -algebra. If 1 0≠  

in A , then the map k A→  is injective, we can identify k
with its image, i.e., we can regard k as a subring ofA  . If 1=0 

in a ring R, the R is the zero ring, i.e., { }0R= . Polynomial 

rings.  Let  k  be a field. A monomial in 1,..., nX X  is an 

expression of the form 1
1 ... ,naa

n jX X a N∈  . The total 

degree of the monomial is ia∑ . We sometimes abbreviate it 

by 1, ( ,..., ) n
nX a aα α = ∈�

. 
The elements of the 

polynomial ring [ ]1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a∈ ∈∑ �

   
With the obvious notions of equality, addition and 
multiplication. Thus the monomials from basis for  

[ ]1,..., nk X X  as a k -vector space. The ring 

[ ]1,..., nk X X is an integral domain, and the only units in it 

are the nonzero constant polynomials. A polynomial 

1( ,..., )nf X X  is irreducible if it is nonconstant and has only 

the obvious factorizations, i.e., f gh g= ⇒  or h  is 

constant. Division in [ ]k X . The division algorithm allows 

us to divide a nonzero polynomial into another: let f  and g  

be polynomials in [ ]k X with 0;g ≠  then there exist unique 

polynomials [ ],q r k X∈  such that f qg r= +  with either 

0r =  or degr  < degg . Moreover, there is an algorithm for 

a A∈
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deciding whether ( )f g∈ , namely, find r and check 

whether it is zero. Moreover, the Euclidean algorithm allows 

to pass from finite set of generators for an ideal in [ ]k X to a 

single generator by successively replacing each pair of 
generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here monomials are 
ordered by lexicographic(dictionary) order. More precisely, let 

1( ,... )na aα =  and 1( ,... )nb bβ =  be two elements of n� ; 

then  α β>  and  X Xα β> (lexicographic ordering) if, in 

the vector difference α β− ∈� , the left most nonzero entry 

is positive. For example,  

 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z> > . Note that this isn’t 

quite how the dictionary would order them: it would put 
XXXYYZZZZ  after XXXYYZ . Graded reverse 
lexicographic order (grevlex). Here monomials are ordered by 
total degree, with ties broken by reverse lexicographic 

ordering. Thus, α β>  if i ia b>∑ ∑ , or i ia b=∑ ∑  

and in α β−  the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z>  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ> > . 
 

Orderings on [ ]1,... nk X X  . Fix an ordering on the 

monomials in [ ]1,... nk X X . Then we can write an element 

f  of [ ]1,... nk X X  in a canonical fashion, by re-ordering its 

elements in decreasing order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z= + − +   

as 
3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex= − + + +   

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex= + − +   

Let [ ]1,..., na X k X Xα
α ∈∑  , in decreasing order: 

0 1

0 1 0 1 0..., ..., 0f a X Xα α
α α α α α= + + > > ≠

  
Then we define. 

• The multidegree of f  to be multdeg( f )= 0α ;  

• The leading coefficient of f to be LC( f )=
0

aα ; 

• The leading monomial of  f to be LM( f ) = 0Xα ; 

• The leading term of f to be LT( f ) = 0

0
a Xα

α   

For the polynomial 24 ...,f XY Z= +  the multidegree is 

(1,2,1), the leading coefficient is 4, the leading monomial is 
2XY Z , and the leading term is  24XY Z . The division 

algorithm in [ ]1,... nk X X . Fix a monomial ordering in 2�

. Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm then 

constructs polynomials 1,... sa a  and r   such that 

1 1 ... s sf a g a g r= + + +   Where either 0r =  or no 

monomial in r  is divisible by any of 1( ),..., ( )sLT g LT g   

Step 1: If 1( ) | ( )LT g LT f , divide 1g  into f  to get 

[ ]1 1 1 1
1

( )
, ,...,

( ) n

LT f
f a g h a k X X

LT g
= + = ∈

 
If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f= +   (different 1a ) with 1( )LT f  not divisible by 

1( )LT g . Now divide 2g  into 1f , and so on, until 

1 1 1... s sf a g a g r= + + +   With 1( )LT r  not divisible by 

any 1( ),... ( )sLT g LT g   Step 2: Rewrite 1 1 2( )r LT r r= + , 

and repeat Step 1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r= + + + +   (different 'ia s  )   

Monomial ideals. In general, an ideal a  will contain a 
polynomial without containing the individual terms of the 

polynomial; for example, the ideal 2 3( )a Y X= −  contains 
2 3Y X− but not 2Y  or 3X . 

 
DEFINITION 1.5. An ideal a  is monomial if 

c X a X aα α
α ∈ ⇒ ∈∑  

 all α  with 0cα ≠ .  

PROPOSITION 1.3. Let a be a monomial ideal, and let 

{ }|A X aαα= ∈ . Then A satisfies the condition 

, ( )nAα β α β∈ ∈ ⇒ + ∈ ∗�   And a  is the k -

subspace of [ ]1,..., nk X X  generated by the ,X Aα α ∈ . 

Conversely, of A  is a subset of n�  satisfying ( )∗ , then the 

k-subspace  a  of [ ]1,..., nk X X  generated by 

{ }|X Aα α ∈ is a monomial ideal. 

 
PROOF.  It is clear from its definition that a monomial ideal 

a  is the  k -subspace of [ ]1,..., nk X X
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generated by the set of monomials it contains. If 
X aα ∈

 and 

[ ]1,..., nX k X Xβ ∈
 . 

   
If a permutation is chosen uniformly and at random from the 

!n  possible permutations in ,nS  then the counts ( )n
jC  of 

cycles of length j  are dependent random variables. The joint 

distribution of ( ) ( ) ( )
1( ,..., )n n n

nC C C=  follows from 

Cauchy’s formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !
j

nn
cn

j
j j j

P C c N n c jc n
n j c= =

 
= = = = 

 
∑ ∏

  

for nc +∈� .  

 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j == =

     
 = ≤           

∑∏ ∏
  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm
j j j jc c c m= −   when 

,j jc m≥  which occurs between the ingredients in Cauchy’s 

formula and the falling factorials in the moments. Write 

jm jm=∑ . Then, with the first sum indexed by 

1( ,... ) n
nc c c += ∈�  and the last sum indexed by  

1( ,..., ) n
nd d d += ∈�  via the correspondence 

,j j jd c m= −  we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

= =

≥ = =

== =

 
= = 

 

 
= = 

 

 
= = − 

 

∑∏ ∏

∑ ∑ ∏

∑ ∑∏ ∏

  

This last sum simplifies to the indicator 1( ),m n≤  

corresponding to the fact that if 0,n m− ≥  then 0jd =  for 

,j n m> −  and a random permutation in n mS −  must have 

some cycle structure 1( ,..., )n md d − . The moments of ( )n
jC   

follow immediately as 

{ }( ) [ ]( ) 1 (1.2)n r r
jE C j jr n−= ≤   

We note for future reference that (1.4) can also be written in 
the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
== =

     
= ≤     

    
∑∏ ∏   

Where the jZ  are independent Poisson-distribution random 

variables that satisfy ( ) 1/jE Z j=   

 
The marginal distribution of cycle counts provides a formula 

for the joint distribution of the cycle counts ,n
jC  we find the 

distribution of n
jC  using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 

Lemma  1.8.   For 1 ,j n≤ ≤  

 [ / ]
( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j
l

j j
P C k

k l

− −−

=
= = −∑   

Proof.     Consider the set I  of all possible cycles of length 

,j  formed with elements chosen from { }1,2,... ,n  so that 

[ ]/j jI n= . For each ,Iα ∈  consider the “property” Gα  of 

having ;α  that is,  Gα is the set of permutations nSπ ∈  

such that α  is one of the cycles of .π  We then have 

( )!,G n jα = − since the elements of { }1,2,...,n  not in α  

must be permuted among themselves. To use the inclusion-

exclusion formula we need to calculate the term ,rS  which is 

the sum of the probabilities of the r -fold intersection of 
properties, summing over all sets of r distinct properties. 
There are two cases to consider. If the r properties are 
indexed by r cycles having no elements in common, then the 
intersection specifies how rj  elements are moved by the 

permutation, and there are ( )!1( )n rj rj n− ≤  permutations 

in the intersection. There are [ ] / ( !)rj rn j r  such intersections. 

For the other case, some two distinct properties name some 
element in common, so no permutation can have both these 
properties, and the r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

= − ≤

× = ≤
  

Finally, the inclusion-exclusion series for the number of 
permutations having exactly k  properties is 

,
0

( 1)l
k l

l

k l
S

l +
≥

+ 
−  

 
∑   

Which simplifies to (1.1) Returning to the original hat-check 
problem, we substitute j=1 in (1.1) to obtain the distribution of 
the number of fixed points of a random permutation. For 

0,1,..., ,k n=   
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( )
1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l

−

=

= = −∑   

and the moments of ( )
1

nC  follow from (1.2) with 1.j =  In 

particular, for  2,n ≥  the mean and variance of ( )
1

nC are both 

equal to 1. The joint distribution of ( ) ( )
1( ,..., )n n

bC C  for any 

1 b n≤ ≤  has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 1( ,..., ) b
bc c c += ∈�  

with ,im ic=∑   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
+ +

≥= =
≤ −

=

     = −    
     

∑

∑∏ ∏   

The joint moments of the first b  counts ( ) ( )
1 ,...,n n

bC C  can be 

obtained directly from (1.2) and (1.3) by setting 

1 ... 0b nm m+ = = =   

 
The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for each fixed 

,j  as ,n → ∞  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k

−
−= → =   

So that ( )n
jC converges in distribution to a random variable 

jZ  having a Poisson distribution with mean 1/ ;j  we use the 

notation ( )n
j d jC Z→  where (1/ )j oZ P j�   to describe 

this. Infact, the limit random variables are independent. 
 
Theorem 1.6   The process of cycle counts converges in 

distribution to a Poisson process of �  with intensity 1j − . 

That is, as ,n → ∞   
( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z→   

Where the , 1, 2,...,jZ j =  are independent Poisson-

distributed random variables with  
1

( )jE Z
j

=   

Proof.  To establish the converges in distribution one shows 

that for each fixed 1,b ≥  as ,n → ∞   

 ( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c= → =   

 
Error rates 
The proof of Theorem says nothing about the rate of 
convergence. Elementary analysis can be used to estimate this 

rate when 1b = . Using properties of alternating series with 

decreasing terms, for 0,1,..., ,k n=   

( )
1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

− ≤ = − =
− + − +

≤
− +

   

 
It follows that  

1 1
( )
1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

+ +

=

−≤ = − = ≤
+ + +∑   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n

−

> = + + + <
+ + + + +

  

We see from (1.11) that the total variation distance between 

the distribution ( )
1( )nL C  of ( )

1
nC  and the distribution 1( )L Z  

of 1Z
 

 

Establish the asymptotics of ( )( )n
nA C Ρ    under conditions 

0( )A  and 01( ),B  where 

{ }
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
≤ ≤ + ≤ ≤

= =I I
 

and 
''( / ) 1 ( )g

i i idr r O iζ −= − =  as ,i → ∞  for some 
' 0.g >   We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z n
P A C

P T Z n

E
ir

θ
≤ ≤
+ ≤ ≤

==
=

 
− + 

 
∏

  

{ }{ }

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑   

and 

{ }{ }

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑  

Where { }
'
1,2,7 ( )nϕ  refers to the quantity derived from 'Z . It 

thus follows that ( ) (1 )[ ( )]n d
nP A C Kn θ− −�  for a constant 
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K , depending on Z  and the '
ir  and computable explicitly 

from (1.1) – (1.3), if Conditions 0( )A  and 01( )B  are satisfied 

and if 
'

( )g
i O iζ ∗ −=  from some ' 0,g >  since, under these 

circumstances, both { }
1 '

1,2,7 ( )n nϕ−  and  { }
1

1,2,7 ( )n nϕ−  tend 

to zero as .n → ∞  In particular, for polynomials and square 
free polynomials, the relative error in this asymptotic 

approximation is of order 
1n−
 if ' 1.g >   

 

For 0 / 8b n≤ ≤  and 0,n n≥  with 0n   

{ }7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n bε
≤
≤

� �

  

Where { }7,7 ( , ) ( / )n b O b nε =  under Conditions 0 1( ), ( )A D  

and 11( )B
 
Since, by the Conditioning Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l= = =
� �

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n

∈

=

= =

 = −− = 

∑

� �

  

Suppressing the argument Z  from now on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ]
[ ] 1

[ ]
bn

b
r n

P T n r
P T r

P T n≥ +

 = −= = − = 
∑  

[ /2]
0

0
/2 0 0

[ ]
[ ]

[ ]

n
b

b
r n r b

P T r
P T r

P T n> =

=≤ = +
=∑ ∑  

0
0

[ ]( [ ] [ ]
n

b bn bn
s

P T s P T n s P T n r
= +

 × = = − − = − 
 
∑  

[ /2]

0 0
/2 0

[ ] [ ]
n

b b
r n r

P T r P T r
> =

≤ = + =∑ ∑  

{ }[ /2]

0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n

n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n

=

= = +

= − − = −
× =

=

+ = = = − =

∑

∑ ∑

 The first sum is at most 1
02 ;bn ET− the third is bound by 

{ }

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n Pθ

ε
θ

< ≤
= =

≤
  

{ }

{ }

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b
r s

b

n
n n P T r P T s r s

P

n ET

P n

θ

θ

φ
θ

φ
θ

− ∗

= =

∗

= = −

≤

∑ ∑
  

Hence we may take 

{ }
{ }

{ }

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P

θ

θ

φ
ε

θ

ε
θ

∗
−

  = + 
  

+

  

 

Required order under Conditions 0 1( ), ( )A D  and 11( ),B  if 

( ) .S ∞ < ∞  If not, { } ( )10.8 nφ∗  can be replaced by { } ( )10.11 nφ ∗

in the above, which has the required order, without the 

restriction on the ir  implied by ( )S ∞ < ∞ . Examining the 

Conditions  0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  that is, that 

we should need 1

2
( )a

ill
l O iε −

≥
=∑   to hold for some 

1 1a > . A first observation is that a similar problem arises 

with the rate of decay of 1iε  as well. For this reason, 1n  is 

replaced by 1n
�

. This makes it possible to replace condition 

1( )A  by the weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for { } ( )7,7 ,n bε  to be of order 

( / );O b n   the decay rate requirement of order 
1i γ− −

 is 

shifted from 1iε  itself to its first difference. This is needed to 

obtain the right approximation error for the random mappings 
example. However, since all the classical applications make 

far more stringent assumptions about the 1, 2,i lε ≥  than are 

made in 11( )B . The critical point of the proof is seen where 

the initial estimate of the difference
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( ) ( )[ ] [ 1]m m
bn bnP T s P T s= − = + . The factor { }10.10 ( ),nε  

which should be small, contains a far tail element from 1n
�

 of 

the form 1 1( ) ( ),n u nθφ ∗+  which is only small if 1 1,a >  

being otherwise of order 11( )aO n δ− +  for any 0,δ >  since 

2 1a >  is in any case assumed. For / 2,s n≥  this gives rise 

to a contribution of order  11( )aO n δ− − +  in the estimate of the 

difference [ ] [ 1],bn bnP T s P T s= − = +  which, in the 

remainder of the proof, is translated into a contribution of 

order 11( )aO tn δ− − + for differences of the form 

[ ] [ 1],bn bnP T s P T s= − = +  finally leading to a 

contribution of order 1abn δ− +
 for any 0δ >  in { }7.7 ( , ).n bε  

Some improvement would seem to be possible, defining the 

function g  by { } { }( ) 1 1 ,w s w s tg w = = += −   differences that are 

of the form [ ] [ ]bn bnP T s P T s t= − = +  can be directly 

estimated, at a cost of only a single contribution of the form 

1 1( ) ( ).n u nθφ ∗+  Then, iterating the cycle, in which one 

estimate of a difference in point probabilities is improved to 
an estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n δ− − +−= − = + = +  for any 

0δ >  could perhaps be attained, leading to a final error 

estimate in order  11( )aO bn n δ− +− + for any 0δ > , to 

replace { }7.7 ( , ).n bε  This would be of the ideal order 

( / )O b n for large enough ,b  but would still be coarser for 

small .b   
 
 
With b and n  as in the previous section, we wish to show that  

{ }

1
0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b

θ

ε

−− + − −

≤

  

Where { }
121 1

7.8 ( , ) ( [ ])n b O n b n b nβ δε − +− −= +  for any 

0δ >  under Conditions 0 1( ), ( )A D  and 12( ),B with 12β . 

The proof uses sharper estimates. As before, we begin with the 
formula  

 

0
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∑
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Now we observe that  
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We have   
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The approximation in (1.2) is further simplified by noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus find tha
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≤
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∑ ∑

� �

 

The quantity { }7.8 ( , )n bε is seen to be of the order claimed 

under Conditions 0 1( ), ( )A D  and 12( )B , provided that 

( ) ;S ∞ < ∞  this supplementary condition can be removed if 

{ }10.8 ( )nφ ∗  is replaced by { }10.11 ( )nφ ∗    in the definition of 

{ }7.8 ( , )n bε , has the required order without the restriction on 

the ir  implied by assuming that ( ) .S ∞ < ∞ Finally, a direct 

calculation now shows that 

0 0
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0 0

[ ] [ ]( )(1 )

1
1
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b b
r s

b b

P T r P T s s r

E T ET

θ

θ

≥ ≥ +
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 
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∑ ∑

 
 

Example 1.0.  Consider the point (0,...,0) nO = ∈� . For 

an arbitrary vector r , the coordinates of the point x O r= +  
are equal to the respective coordinates of the vector 

1: ( ,... )nr x x x=  and 1( ,..., )nr x x= . The vector r such as 

in the example is called the position vector or the radius vector 
of the point x  . (Or, in greater detail: r  is the radius-vector of 
x  w.r.t an origin O). Points are frequently specified by their 
radius-vectors. This presupposes the choice of O as the 
“standard origin”.   Let us summarize. We have considered 

n�  and interpreted its elements in two ways: as points and as 
vectors. Hence we may say that we leading with the two 

copies of  :n�  
n� = {points},      n� = {vectors}  

Operations with vectors: multiplication by a number, addition. 
Operations with points and vectors: adding a vector to a point 

(giving a point), subtracting two points (giving a vector). n�
treated in this way is called an n-dimensional affine space. (An 

“abstract” affine space is a pair of sets , the set of points and 
the set of vectors so that the operations as above are defined 
axiomatically). Notice that vectors in an affine space are also 
known as “free vectors”. Intuitively, they are not fixed at 

points and “float freely” in space. From n� considered as an 

affine space we can precede in two opposite directions: n�  as 

an Euclidean space ⇐  n� as an affine space ⇒  n� as a 
manifold.Going to the left means introducing some extra 
structure which will make the geometry richer. Going to the 
right means forgetting about part of the affine structure; going 
further in this direction will lead us to the so-called “smooth 
(or differentiable) manifolds”. The theory of differential forms 
does not require any extra geometry. So our natural direction 
is to the right. The Euclidean structure, however, is useful for 
examples and applications. So let us say a few words about it: 
 

Remark 1.0.  Euclidean geometry.  In n�  considered as 
an affine space we can already do a good deal of geometry. 
For example, we can consider lines and planes, and quadric 
surfaces like an ellipsoid. However, we cannot discuss such 
things as “lengths”, “angles” or “areas” and “volumes”. To be 
able to do so, we have to introduce some more definitions, 

making n� a Euclidean space. Namely, we define the length 

of a vector 1( ,..., )na a a=  to be  

1 2 2: ( ) ... ( ) (1)na a a= + +   

After that we can also define distances between points as 
follows: 

( , ) : (2)d A B AB=
uuur

  

One can check that the distance so defined possesses natural 
properties that we expect: is it always non-negative and equals 
zero only for coinciding points; the distance from A to B is the 
same as that from B to A (symmetry); also, for three points, A, 
B and C, we have ( , ) ( , ) ( , )d A B d A C d C B≤ +  (the 

“triangle inequality”). To define angles, we first introduce the 
scalar product of two vectors 

 1 1( , ) : ... (3)n na b a b a b= + +   

Thus ( , )a a a=  . The scalar product is also denote by 

dot: . ( , )a b a b= , and hence is often referred to as the “dot 

product” . Now, for nonzero vectors, we define the angle 
between them by the equality 

( , )
cos : (4)

a b

a b
α =   

The angle itself is defined up to an integral multiple 
of 2π  . For this definition to be consistent we have to ensure 
that the r.h.s. of (4) does not exceed 1 by the absolute value. 
This follows from the inequality 

2 22( , ) (5)a b a b≤   
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known as the Cauchy–Bunyakovsky–Schwarz inequality 
(various combinations of these three names are applied in 
different books). One of the ways of proving (5) is to consider 

the scalar square of the linear combination ,a tb+  where 

t R∈ . As  ( , ) 0a tb a tb+ + ≥  is a quadratic polynomial in 

t  which is never negative, its discriminant must be less or 
equal zero. Writing this explicitly yields (5). The triangle 
inequality for distances also follows from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x=  (the i-th 

coordinate). The linear function 
idx  (the differential of 

ix  ) 

applied to an arbitrary vector h  is simply 
ih .From these 

examples follows that we can rewrite df  as 

1
1

... , (1)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

  

which is the standard form. Once again: the partial derivatives 

in (1) are just the coefficients (depending on x ); 1 2, ,...dx dx  

are linear functions giving on an arbitrary vector h  its 

coordinates 1 2, ,...,h h  respectively. Hence 

  

1
( ) 1

( )( )

... , (2)

hf x

n
n

f
df x h h

x
f

h
x

∂= ∂ = +
∂

∂+
∂

 

 
Theorem   1.7.     Suppose we have a parametrized curve 

( )t x ta  passing through 0
nx ∈�  at 0t t=  and with the 

velocity vector 0( )x t υ=  Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt υ υ= ∂ =   

 
Proof.  Indeed, consider a small increment of the parameter 

0 0:t t t t+ ∆a , Where 0t∆ a . On the other hand, we 

have  0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h hβ+ − = +   for an 

arbitrary vectorh , where ( ) 0hβ →  when 0h →  . 

Combining it together, for the increment of ( ( ))f x t   we 

obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

υ α
β υ α υ α

υ γ

+ ∆ −
= ∆ + ∆ ∆
+ ∆ + ∆ ∆ ∆ + ∆ ∆
= ∆ + ∆ ∆

     

For a certain ( )tγ ∆  such that ( ) 0tγ ∆ → when 0t∆ →  

(we used the linearity of 0( )df x ). By the definition, this 

means that the derivative of ( ( ))f x t  at 0t t=  is exactly

0( )( )df x υ . The statement of the theorem can be expressed 

by a simple formula: 

1
1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

∂ ∂= + +
∂ ∂

  

 

To calculate the value Of df  at a point 0x  on a given vector 

υ  one can take an arbitrary curve passing Through 0x  at 0t  

with υ  as the velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t= . 

 

Theorem 1.8.  For functions , :f g U → � , ,nU ⊂ �   

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

+ = +
= +

   

 

Proof. Consider an arbitrary point 0x  and an arbitrary vector 

υ  stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x=  and 0( )x t υ= .  

Hence 0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

υ+ = +   

at 0t t=  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

υ =   

at 0t t=  Formulae (1) and (2) then immediately follow from 

the corresponding formulae for the usual derivative Now, 
almost without change the theory generalizes to functions 

taking values in  m�  instead of � . The only difference is 

that now the differential of a map : mF U → �  at a point x  

will be a linear function taking vectors in n�  to vectors in 
m� (instead of � ) . For an arbitrary vector | ,nh∈ �   

 
( ) ( ) ( )( )F x h F x dF x h+ = +   

+ ( ) (3)h hβ   

Where ( ) 0hβ →   when  0h → . We have  
1( ,..., )mdF dF dF=  and  
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1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F F
dF dx dx

x x

F F
dxx x

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  =   
  ∂ ∂    ∂ ∂ 

  

 
In this matrix notation we have to write vectors as vector-
columns. 

 
Theorem 1.9. For an arbitrary parametrized curve ( )x t  in 

n� , the differential of a   map : mF U → �  (where 
nU ⊂ � ) maps the velocity vector ( )x t  to the velocity 

vector of the curve ( ( ))F x t  in :m�   
.( ( ))

( ( ))( ( )) (1)
dF x t

dF x t x t
dt

=     

 
Proof.  By the definition of the velocity vector, 

.

( ) ( ) ( ). ( ) (2)x t t x t x t t t tα+ ∆ = + ∆ + ∆ ∆   

Where ( ) 0tα ∆ →  when 0t∆ → . By the definition of the 

differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h hβ+ = + +   

Where ( ) 0hβ →  when 0h → . we obtain  
.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t

α

α

β α α

γ

+ ∆ = + ∆ + ∆ ∆

= + ∆ + ∆ ∆ +

∆ + ∆ ∆ ∆ + ∆ ∆

= + ∆ + ∆ ∆

144424443

   

 

For some ( ) 0tγ ∆ →  when 0t∆ → . This precisely means 

that 
.

( ) ( )dF x x t  is the velocity vector of ( )F x . As every 

vector attached to a point can be viewed as the velocity vector 
of some curve passing through this point, this theorem gives a 
clear geometric picture of dF  as a linear map on vectors. 

   
Theorem 1.10 Suppose we have two maps :F U V→  and 

: ,G V W→  where , ,n m pU V W⊂ ⊂ ⊂� � �  (open 

domains). Let : ( )F x y F x=a . Then the differential of 

the composite map :GoF U W→  is the composition of the 

differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x=   

 
Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in n�  with the velocity vector 
.

x . 

Basically, we need to know to which vector in  p� it is taken 
by ( )d GoF . the curve ( )( ( ) ( ( ( ))GoF x t G F x t= . By the 

same theorem, it equals the image under dG  of the Anycast 

Flow vector to the curve ( ( ))F x t  in m� . Applying the 

theorem once again, we see that the velocity vector to the 

curve ( ( ))F x t is the image under dF of the vector 
.

( )x t . 

Hence 
. .

( )( ) ( ( ))d GoF x dG dF x=   for an arbitrary vector 
.

x  . 
 

Corollary 1.0.    If we denote coordinates in n� by 
1( ,..., )nx x  and in m� by 1( ,..., )my y , and write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F F
dF dx dx

x x
G G

dG dy dy
y y

∂ ∂= + +
∂ ∂
∂ ∂= + +
∂ ∂

  

Then the chain rule can be expressed as follows: 

1
1

( ) ... , (3)m
m

G G
d GoF dF dF

y y

∂ ∂= + +
∂ ∂

  

Where 
idF  are taken from (1). In other words, to get 

( )d GoF  we have to substitute into (2) the expression for 
i idy dF=  from (3). This can also be expressed by the 

following matrix formula: 
  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF

dxG G F F

y y x x

 ∂ ∂  ∂ ∂
   ∂ ∂ ∂ ∂    =      ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂  

 

 
i.e., if dG  and dF  are expressed by matrices of partial 

derivatives, then ( )d GoF  is expressed by the product of 

these matrices. This is often written as  
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1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z

x x y y

y y

x x

y y

x x

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
 = 
  ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂   

 ∂ ∂
 ∂ ∂ 
 
 ∂ ∂  ∂ ∂ 

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

µ µ

=

∂ ∂ ∂=
∂ ∂ ∂∑   

Where it is assumed that the dependence of my∈�  on 
nx∈�  is given by the map F , the dependence of pz∈ �  

on my∈�  is given by the map ,G  and the dependence of  
pz∈ � on 

nx∈� is given by the composition GoF .  
 

Definition 1.6.  Consider an open domain 
nU ⊂ � . Consider 

also another copy of n� , denoted for distinction n
y� , with 

the standard coordinates 1( ... )ny y . A system of coordinates 

in the open domain U  is given by a map : ,F V U→  

where n
yV ⊂ �  is an open domain of n

y� , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 1 :F U V− →  is also smooth 
 

The coordinates of a point x U∈  in this system are the 

standard coordinates of 1( ) n
yF x− ∈�  

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y=a   

Here the variables 1( ..., )ny y  are the “new” coordinates of 

the point x   
 

Example  1.2.     Consider a curve in 2�  specified in polar 
coordinates as  

( ) : ( ), ( ) (1)x t r r t tϕ ϕ= =   

We can simply use the chain rule. The map ( )t x ta  can be 

considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x rϕ ϕ ϕa a . Then, by the chain 

rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r

ϕ ϕ
ϕ ϕ

∂ ∂ ∂ ∂= = + = +
∂ ∂ ∂ ∂

   

Here 
.

r  and 
.

ϕ  are scalar coefficients depending on t , 

whence the partial derivatives ,x x
r ϕ

∂ ∂
∂ ∂   are vectors 

depending on point in 2� . We can compare this with the 

formula in the “standard” coordinates: 
. . .

1 2x e x e y= + . 

Consider the vectors   ,x x
r ϕ

∂ ∂
∂ ∂ . Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r
x

r r

ϕ ϕ

ϕ ϕ
ϕ

∂ =
∂
∂ = −
∂

  

From where it follows that these vectors make a basis at all 
points except for the origin (where 0r = ). It is instructive to 
sketch a picture, drawing vectors corresponding to a point as 

starting from that point. Notice that  ,x x
r ϕ

∂ ∂
∂ ∂  are, 

respectively, the velocity vectors for the curves ( , )r x r ϕa   

0( )fixedϕ ϕ=  and 0( , ) ( )x r r r fixedϕ ϕ =a . We can 

conclude that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r ϕ  if as a basis 

we take : , : :r
x xe er ϕ ϕ

∂ ∂= =∂ ∂   

. . .

(5)rx e r eϕ ϕ= +    

A characteristic feature of the basis ,re eϕ  is that it is not 

“constant” but depends on point. Vectors “stuck to points” 
when we consider curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and the 

transformation law for the basis ie .In particular, the elements 

of the basis ii
xe

x
∂= ∂  (originally, a formal notation) can be 

understood directly as the velocity vectors of the coordinate 

lines 1( ,..., )i nx x x xa   (all coordinates but 
ix  are fixed). 

Since we now know how to handle velocities in arbitrary 
coordinates, the best way to treat the differential of a map 

: n mF →� �  is by its action on the velocity vectors. By 
definition, we set 
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0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt
a   

Now 0( )dF x  is a linear map that takes vectors attached to a 

point 0
nx ∈�  to vectors attached to the point ( ) mF x ∈�   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F F
dF dx dx

x x

F F
dxx x

e e

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  
  
  ∂ ∂    ∂ ∂ 

  

In particular, for the differential of a function we always have  

1
1

... , (3)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a change of 
coordinates. 

 

Example  1.3   Consider a 1-form in 2�  given in the 
standard coordinates: 

 
A ydx xdy= − +   In the polar coordinates we will have 

cos , sinx r y rϕ ϕ= = , hence 

cos sin

sin cos

dx dr r d

dy dr r d

ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= +

  

Substituting into A, we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − −
+ +
= + =

  

Hence  2A r dϕ=  is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 1-form, a 
linear combination of the differentials of coordinates with 
functions as coefficients. Secondly, in a more conceptual way, 
we can define a 1-form in a domain U  as a linear function on 
vectors at every point of U : 

1
1( ) ... , (1)n

nω υ ω υ ω υ= + +   

If i
ieυ υ=∑ , where ii

xe
x

∂= ∂ . Recall that the 

differentials of functions were defined as linear functions on 
vectors (at every point), and  

( ) (2)i i i
j jj

x
dx e dx

x
δ∂ = = ∂ 

    at every point 

x .  

 
Theorem  1.9.   For arbitrary 1-form ω  and path γ , the 

integral 
γ

ω∫  does not change if we change parametrization of 

γ  provide the orientation remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

ω  and  '
'

( ( ( ))),
dx

x t t
dt

ω  

As 

'
'

( ( ( ))),
dx

x t t
dt

ω = '
' '

( ( ( ))), . ,
dx dt

x t t
dt dt

ω   

 
 
 
Let p  be a rational prime and let ( ).pK ζ= �  We write ζ  

for pζ  or this section. Recall that K  has degree 

( ) 1p pϕ = −  over .�  We wish to show that [ ].KO ζ= �  

Note that ζ  is a root of 1,px −  and thus is an algebraic 

integer; since KΟ  is a ring we have that [ ] .KOζ ⊆�  We 

give a proof without assuming unique factorization of ideals. 
We begin with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then jζ  is a primitive 
thp  root of unity, and thus its conjugates are 

2 1, ,..., .pζ ζ ζ −  Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p
K pTr ζ ζ ζ ζ ζ−= + + + = Φ − = −�   

If p  does divide ,j  then 1,jζ =  so it has only the one 

conjugate 1, and  / ( ) 1j
KTr pζ = −�  By linearity of the 

trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )

K K

p
K

Tr Tr

Tr p

ζ ζ

ζ −

− = − =

= − =
� �

�

 

We also need to compute the norm of 1 ζ− . For this, we use 

the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x xζ ζ ζ

− −

−

+ + + = Φ

= − − −
  

Plugging in 1x =  shows that  

 2 1(1 )(1 )...(1 )pp ζ ζ ζ −= − − −   

Since the (1 )jζ−  are the conjugates of (1 ),ζ− this shows 

that  / (1 )KN pζ− =�  The key result for determining the 

ring of integers KO  is the following. 
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LEMMA 1.9 

  (1 ) KO pζ− ∩ =� �   

Proof.  We saw above that p  is a multiple of (1 )ζ−  in 

,KO  so the inclusion (1 ) KO pζ− ∩ ⊇� �
 
is immediate.  

Suppose now that the inclusion is strict. Since 

(1 ) KOζ− ∩� is an ideal of �  containing p�  and p� is 

a maximal ideal of � , we must have  (1 ) KOζ− ∩ =� �
 

Thus we can write  1 (1 )α ζ= −   

For some .KOα ∈  That is, 1 ζ−  is a unit in .KO   

 

COROLLARY 1.1   For any ,KOα ∈  

/ ((1 ) ) .KTr pζ α− ∈� �   

PROOF.       We have  
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr ζ α σ ζ α σ ζ α
σ ζ σ α σ ζ σ α

ζ σ α ζ σ α

−

− −

−
−

− = − + + −

= − + + −

= − + + −

�

 

Where the iσ  are the complex embeddings of K  (which we 

are really viewing as automorphisms of K ) with the usual 

ordering.  Furthermore, 1 jζ−  is a multiple of 1 ζ−  in KO  

for every 0.j ≠  Thus 

/ ( (1 )) (1 )K KTr Oα ζ ζ− ∈ −�  
Since the trace is also a 

rational integer. 
 
PROPOSITION 1.4  Let p  be a prime number and let 

| ( )pK ζ= �  be the thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x xζ= ≅ Φ� �  Thus 21, ,..., p
p pζ ζ −  is an 

integral basis for KO . 

PROOF.    Let   KOα ∈  and write 
2

0 1 2... p
pa a aα ζ ζ −

−= + + +   With .ia ∈�  Then 

 

2
0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a

a

α ζ ζ ζ ζ
ζ ζ− −

−

− = − + − +

+ −
  

By the linearity of the trace and our above calculations we find 

that  / 0( (1 ))KTr paα ζ− =�  We also have  

/ ( (1 )) ,KTr pα ζ− ∈� � so 0a ∈�   Next consider the 

algebraic integer  
1 3

0 1 2 2( ) ... ;p
pa a a aα ζ ζ ζ− −

−− = + + +  This is an 

algebraic integer since 1 1pζ ζ− −=  is. The same argument as 

above shows that 1 ,a ∈�  and continuing in this way we find 

that all of the ia  are in � . This completes the proof. 

  

Example 1.4   Let K = � , then the local ring ( )p�  is simply 

the subring of �  of rational numbers with denominator 

relatively prime to p . Note that this ring   ( )p� is not the ring 

p� of p -adic integers; to get  p� one must complete ( )p� . 

The usefulness of ,K pO  comes from the fact that it has a 

particularly simple ideal structure. Let abe any proper ideal 

of ,K pO  and consider the ideal Ka O∩  of .KO  We claim 

that ,( ) ;K K pa a O O= ∩    That is, that a  is generated by the 

elements of a  in .Ka O∩  It is clear from the definition of an 

ideal that ,( ) .K K pa a O O⊇ ∩  To prove the other inclusion, 

let α  be any element of a . Then we can write /α β γ=  

where KOβ ∈  and .pγ ∉  In particular, aβ ∈  (since 

/ aβ γ ∈  and a  is an ideal), so KOβ ∈  and .pγ ∉  so 

.Ka Oβ ∈ ∩  Since ,1/ ,K pOγ ∈  this implies that 

,/ ( ) ,K K pa O Oα β γ= ∈ ∩  as claimed.We can use this 

fact to determine all of the ideals of , .K pO  Let a  be any ideal 

of ,K pO and consider the ideal factorization of Ka O∩ in 

.KO  write it as n
Ka O p b∩ =  For some n  and some ideal 

,b  relatively prime to .p  we claim first that , , .K p K pbO O=  

We now find that 

  , , ,( ) n n
K K p K p K pa a O O p bO p O= ∩ = =   Since , .K pbO  

Thus every ideal of ,K pO  has the form ,
n

K pp O  for some ;n  

it follows immediately that ,K pO is noetherian. It is also now 

clear that ,
n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pOa  Since 

, ,K p KpO O p∩ =  this map is also surjection, since the 

residue class of ,/ K pOα β ∈  (with KOα ∈  and pβ ∉ ) is 

the image of 1αβ −  in / ,K pO  which makes sense since β  is 

invertible in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-zero 

prime ideal of ,K pO is maximal.  To show that ,K pO is a 

Dedekind domain, it remains to show that it is integrally 
closed in K . So let Kγ ∈  be a root of a polynomial with 
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coefficients in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
α α
β β

−−

−

+ + +  With i KOα ∈  and .i K pOβ −∈  

Set 0 1 1... .mβ β β β −=  Multiplying by mβ  we find that βγ  

is the root of a monic polynomial with coefficients in .KO  

Thus ;KOβγ ∈  since ,pβ ∉  we have ,/ K pOβγ β γ= ∈
. Thus  ,K pO is integrally close in .K   

 
COROLLARY 1.2.   Let K  be a number field of degree n  

and let α  be in KO  then '
/ /( ) ( )K K KN O Nα α=� �   

PROOF.  We assume a bit more Galois theory than usual for 
this proof. Assume first that /K �  is Galois. Let σ  be an 

element of ( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O ασ σ α ≅  since ( ) ,K KO Oσ =  this shows 

that ' '
/ /( ( ) ) ( )K K K KN O N Oσ α α=� � . Taking the product 

over all ( / ),Gal Kσ ∈ �  we have 
' '

/ / /( ( ) ) ( )n
K K K K KN N O N Oα α=� � �  Since / ( )KN α�  is 

a rational integer and KO  is a free� -module of rank ,n    

// ( )K K KO N Oα�   Will have order / ( ) ;n
KN α�  therefore 

 '
/ / /( ( ) ) ( )n

K K K K KN N O N Oα α=� � �  

This completes the proof.  In the general case, let L  be the 
Galois closure of K  and set [ : ] .L K m=   

 

F. Concurrent Crawling Algorithm 

The concurrent crawling approach  
 
Global State-flow Graph. The first change is the separation 
of the state-flow graph from the state machine. The graph is 
defined in a global scope, so that it can be centralized and used 
by all concurrent nodes. Upon the start of the crawling 
process, an initial crawling node is created and its RUN 
procedure is called.  
 
 
Browser Pool. The robot and state machine are created for 
each crawling node. Thus, they are placed in the local scope of 
the RUN procedure. Generally, each node needs to acquire a 
browser instance, and after the process is finished, the browser 
is killed. Creating new browser instances is a process intensive 
and time-consuming operation. To optimize, a new structure is 
introduced: the BrowserPool, which creates and maintains 
browsers in a pool of browsers to be reused by the crawling 
nodes. This reduces start-up and shut-down costs. The 
BrowserPool can be queried for a browser instance, and when 
a node is finished working, the browser used is released back 

to the pool. In addition, the algorithm now takes the desired 
number of browsers as input. Increasing the number of 
browsers used can decrease the crawling runtime, but it also 
comes with some limitations and tradeoffs. 
 
Forward-Tracking. In the sequential algorithm, after 
finishing a crawl path, we need to bring the crawler to the 
previous (relevant) state. In the concurrent algorithm, 
however, we create a new crawling node for each path to be 
examined. Thus, instead of bringing the crawler back to the 
desired state (backtracking), we must take the new node 
forward to the desired state, hence, forward-tracking. This is 
done after the browser is pointed to the URL. The first time 
the RUN procedure is executed, no forward-tracking is taking 
place, since the event-path (i.e., the list of clickable items 
resulting to the desired state) is empty, so the initial crawler 
starts from the Index state. However, if the event path is not 
empty, the clickables are used to take the browser forward to 
the desired state. At that point, the CRAWL procedure is 
called.  
 
Crawling Procedure. The first part of the CRAWL procedure 
is unchanged. To enable concurrent nodes accessing the 
candidate clickables in a thread-safe manner, the body of the 
for loop is synchronized around the candidate element to be 
examined. To avoid examining a candidate element multiple 
times bymultiple nodes, each node first checks the examined 
state of the candidate element. If the element has not been 
examined previously, the robot executes an event on the 
element in the browser and sets its state as examined. If the 
state is changed, before going into the recursive CRAWL call, 
the PARTITION procedure is called.  
 
Partition Procedure. The partition procedure, called on a 
particular state cs, creates a new crawling node for every 
unexamined candidate clickable in cs. The new crawlers are 
initialized with two parameters, namely, (1) the current state 
cs, and (2) the execution path from the initial Index state to 
this state. Every new node is distributed to the work queue 
participating in the concurrent crawling. When a crawling 
node is chosen from the work queue, its corresponding RUN 
procedure is called in order to spawn a new crawling thread. 
 

G. Applying Crawljax 

The results of applying CRAWLJAX to C1–C6 are displayed. 
The key characteristics of the sites under study, such as the 
average DOM size and the total number of candidate 
clickables. Furthermore, it lists the key configuration 
parameters set, most notably the tags used to identify 
candidate clickables and the maximum crawling depth.  
 

H. Accuracy 

Experimental Setup. Assessing the correctness of the 
crawling process is challenging for two reasons. First, there is 
no strict notion of “correctness” with respect to state 
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equivalence. The state comparison operator part of our 
algorithm can be implemented in different ways: the more 
states it considers equal, the smaller and the more abstract the 
resulting state-flow graph is. The desirable level of abstraction 
depends on the intended use of the crawler (regression testing, 
program comprehension, security testing, to name a few) and 
the characteristics of the system being crawled. Second, no 
other crawlers for AJAX are available, making it impossible to 
compare our results to a “gold standard.” Consequently, an 
assessment in terms of precision (percentage of correct states) 
and recall (percentage of states recovered) is impossible to 
give. To address these concerns, we proceed as follows. For 
the cases in which we have full control—C1 and C2—we 
inject specific clickable elements. 
—For C1, 16 elements were injected, out of which 10 were on 
the top-level index page. Furthermore, to evaluate the state 
comparison procedure, we intentionally introduced a number 
of identical (clone) states. 
—For C2, we focused on two product categories, CATS and 
DOGS, from the five available categories. We annotated 36 
elements (product items) by modifying the JAVASCRIPT 
method, which turns the items retrieved from the server into 
clickables on the interface. 
Subsequently, we manually create a referencemodel, to which 
we compare the derived state-flow graph. To assess the four 
external sites C3–C6, we inspect a selection of the states. For 
each site, we randomly select ten clickables in advance, by 
noting their tag names, attributes, and XPath expressions. 
After crawling of each site, we check the presence of these ten 
elements among the list of detected clickables. In order to do 
the manual inspection of the results, we run CRAWLJAX with 
the Mirror plugin enabled. This post-crawling plugin creates a 
static mirror, based on the derived state-flow graph, by writing 
all DOM states to file and replacing edges with appropriate 
hyperlinks. 
  

I. Scalability 

Experimental Setup. In order to obtain an understanding of 
the scalability of our approach, we measure the time needed to 
crawl, as well as a number of site characteristics that will 
affect the time needed. We expect the crawling performance to 
be directly proportional to the input size, which is composed 
of (1) the average DOM string size, (2) number of candidate 
elements, and (3) number of detected clickables and states, 
which are the characteristics that we measure for the six cases. 
To test the capability of our method in crawling real sites and 
coping with unknown environments, we run CRAWLJAX on 
four external cases, C3–C6. We run CRAWLJAX with depth 
level 2 on C3 and C5, each having a huge state space to 
examine the scalability of our approach in analyzing tens of 
thousands of candidate clickables and finding clickables. 
 

J. Findings.  

Concerning the time needed to crawl the internal sites, we see 
that it takes CRAWLJAX 14 and 26 seconds to crawl C1 and 

C2, respectively. The average DOM size in C2 is five times 
bigger, and the number of candidate elements is three times 
higher. In addition to this increase in DOM size and in the 
number of candidate elements, the C2 site does not support the 
browser’s built-in Back method. Thus, as discussed in Section 
3.6, for every state change on the browser, CRAWLJAX has 
to reload the application and click through to the previous 
state to go further. This reloading and clicking through 
naturally has a negative effect on the performance. Note that 
the performance is also dependent on the CPU and memory of 
the machine CRAWLJAX is running on, as well as the speed 
of the server and network properties of the case site. C6, for 
instance, is slow in reloading and retrieving updates from its 
server, which increases the performance measurement 
numbers in our experiment. CRAWLJAX was able to run 
smoothly on the external sites. Except a few minor 
adjustments, we did not witness any difficulties. C3 with depth 
level 2 was crawled successfully in 83 minutes, resulting in 
19,247 examined candidate elements, 1,101 detected 
clickables, and 1,071 detected states. For C5, CRAWLJAX 
was able to finish the crawl process in 107 minutes on 32,365 
candidate elements, resulting in 1,554 detected clickables, and 
1,234 states. As expected, in both cases, increasing the depth 
level from 1 to 2 greatly expands the state space. 
 

K. Concurrent Crawling 

In our final experiment, the main goal is to assess the 
influence of the concurrent crawling algorithm on the crawling 
runtime. 
 
Experimental Object. Our experimental object for this study 
is Google ADSENSE11, an AJAX application developed by 
Google, which empowers online publishers to earn revenue by 
displaying relevant ads on their Web content. The ADSENSE 
interface is built using GWT (Google Web Toolkit) 
components and is written in Java. The index page of 
ADSENSE. On the top, there are four main tabs (Home, My 
ads, Allow & block ads, Performance reports). On the top left 
side, there is a box holding the anchors for the current selected 
tab. Underneath the left-menu box, there is a box holding links 
to help-related pages. On the right of the left-menu we can see 
the main contents,which are loaded by AJAX calls. 
 

L. Applications of Crawljax 

As mentioned in the introduction, we believe that the crawling 
and generating capabilities of our approach have many 
applications for modern Web applications. We believe that the 
crawling techniques that are part of our solution can serve as a 
starting point and be adopted by general search engines to 
expose the hidden-web content induced by JAVASCRIPT, in 
general, and AJAX, in particular. In their proposal for making 
AJAX applications crawlable,15 Google proposes using URLs 
containing a special hash fragment, that is, #!, for identifying 
dynamic content. Google then uses this hash fragment to send 
a request to the server. The server has to treat this request in a 
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special way and send an HTML snapshot of the dynamic 
content, which is then processed by Google’s crawler. In the 
same proposal, they suggest using CRAWLJAX for creating a 
static snapshot for this purpose. Web developers can use the 
model inferred by CRAWLJAX to automatically generate a 
static HTML snapshot of their dynamic content, which then 
can be served to Google for indexing. The ability to 
automatically detect and exercise the executable elements of 
an AJAX site and navigate between the various dynamic states 
gives us a powerful Web-analysis and test-automation 
mechanism. In the recent past, we have applied CRAWLJAX 
in the following Web-testing domains. 
(1) Invariant-based testing of AJAX user interfaces [Mesbah 
and van Deursen 2009], 
(2) Spotting security violations in Web widget interactions 
[Bezemer et al. 2009] (3) Regression testing of dynamic and 
nondeterministic Web interfaces [Roest et al. 2010], 
(4) Automated cross-browser compatibility testing [Mesbah 
and Prasad 2011]. 
 

M. HTTP Request Origin Identification 

The main challenge of detecting the origin widget of a request 
is to couple the request to the DOM element from which it 
originated. This is not a trivial task, since HTTP requests do 
not carry information about the element that triggered the 
request. To be able to analyze HTTP requests, all requests 
must be intercepted. For this purpose, we pro- pose to place an 
HTTP proxy between the client browser and the server, which 
bu_ers all outgoing HTTP requests. The only way to attach 
information about DOM elements to an HTTP request, 
without a_ecting the behavior of the web server handling the 
request, is by adding data to the re- quest query string (e.g., 
?wid=w23&requestForProxyId=123). This data should be 
selected carefully, to ensure it does not interfere with other 
parameters being sent to the server. If the request parameters 
contain the value of a unique at- tribute, such as the element's 
ID, it can be extracted and used to identify the element in the 
DOM. Enforcing all HTTP requests to contain a value with 
which the origin widget can be detected requires having 
mechanisms for the enforcement of a unique attribute in each 
DOM element, and the attachment of the unique attribute of 
the originat- ing element to outgoing requests. First we need to 
consider ways HTTP requests can be triggered in Ajax-based 
web applications. Static Elements. HTTP requests triggered by 
the src attribute of an static element, for instance in a SCRIPT 
or IMG element in the source code of the HTML page, are 
sent immediately when the browser parses them. This leaves 
us no time to dynamically annotate a unique value on these 
elements, as the requests are sent before we can access the 
DOM. The solution we propose is to use the proxy for inter- 
cepting responses as well. The responses can be adjusted by 
the proxy to ensure that each element with a src attribute is 
given a unique identifying attribute. Note that the attribute is 
annotated twice: in the URL so that it reaches the proxy, and 

as an attribute for easy identication on the DOM tree using 
XPath when the violation validation process is carried out. 
 
Dynamic Elements. The src attribute of an element that is 
dynamically created on the client through JavaScript and 
added to the DOM tree, can also trigger an HTTP request. 
Annotating attributes through the proxy has limitations for this 
type of request, since elements that are added dynamically on 
the client-side are missed. During dynamic annotation these 
elements are missed as well, because the request is triggered 
before the element can be annotated. Because we assume 
every element has a unique attribute in our approach, requests 
triggered from dynamically generated elements can be 
detected easily as they do not contain a unique attribute. We 
believe dynamically generated elements with a src attribute 
are rare in modern web applications, and since this attribute 
should point to, for instance, a JavaScript or image, the HTTP 
request they trigger should be easy to verify manually by a 
tester. Therefore, all requests made from elements which are 
not annotated, should be aged as suspicious and inspected by 
the tester.  
 
Ajax Calls. HTTP requests sent through an Ajax call, via the 
XMLHttpRequest object, are the most essential form of 
sending HTTP requests in modern single-page web appli- 
cations [2]. These requests are often triggered by an event, 
e.g., click, mouseover, on an element with the corresponding 
event listener. Note that this type of elements could also be 
created dynamically, and therefore proxy annotation is not 
desirable. Hence, we propose to dynamically annotate such 
elements. To that end, we annotate a unique attribute on the 
element right before an event is red. Note that this annotation 
is easiest to implement by means of aspects, as explained in 
Section 6. After the annotation, the attribute (and its value) 
must be appended to all HTTP requests that the event triggers. 
To that end, we take advantage of a technique known as 
Prototype Hijacking[17], in which the Ajax call responsible 
for client/server communication can be subverted using a 
wrapper function around the XMLHttpRequest object. Dur- 
ing the subversion, we can use the annotated attribute of the 
element, on which the event initiating the call was _red, to add 
a parameter to the query string of the Ajax HTTP call. It is 
possible that the annotated origin element is removed from the 
DOM by the time the request is validated. To avoid this 
problem, we keep track of the DOM history. After an event is 
red, and a DOM change is occurred, the state is saved in the 
history list. Assuming the history size is large enough, a 
request can always be coupled to its origin element, and the 
state from which it was triggered, bysearching the DOM 
history. 
 

N. Trusted Requests 

After detecting the origin widget of a request, the request must 
be validated to verify whether the widget was allowed to send 
this request. To this end, a method must be denied for 
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specifying which requests a widget is allowed to make. Our 
approach uses an idea often applied in Firewall technology, in 
which each application has an allowed list of URLs[10]. For 
each widget, we can automatically create a list of allowed 
URLs by crawling it in an isolated environment. This way, 
every request intercepted by the proxy can be assigned to that 
specific widget. At the end of the crawling process, the proxy 
buyer contains all the requests the widget has triggered. This 
list can be saved, edited by the tester, and retrieved during the 
validation phase of a request. In addition, it is possible for a 
tester to manually ag URLs in the list as suspicious. If during 
the validation process a request URL does not exist in the 
allowed URL list of its origin widget, or if the URL is aged as 
suspicious, we assume the widget does not have permission to 
trigger the request and thus an HTTP request violation has 
occurred. Assuming a request contains the annotated attribute 
of the origin element, Algorithm can be used to automatically 
detect the origin widget of the request and report HTTP 
request violations. Note that this approach also works for 
requests that do not originate from a widget, but from a non-
widget element instead. By crawling the framework with only 
an empty widget, an allowed URL list can be created for the 
frame- work. A request which originates from an element that 
does not have a widget boundary will be validated against the 
allowed URL list of the overall framework. 
 

O. Framework and Language Contributions 

FORWARD facilitates the development of Ajax pages by 
treating them as rendered views. The pages consist of a page 
data tree, which captures the data of the page state at a logical 
level, and a visual layer, where a page unit tree maps to the 
page data tree and renders its data into an html page, typically 
including JavaScript and Ajax components also. The page data 
tree is populated with data from an SQL statement, called the 
page query. SQL has been minimally extended with (a) 
SELECT clause nesting and (b) variability of schemas in 
SQL's CASE statements so that it creates nested 
heterogeneous tables that the programmer easily maps to the 
page unit tree. A user request from the context of a unit leads 
to the invocation of a server-side program, which updates the 
server state. In this paper, which is focused on the report part 
of data-driven pages and applications, we assume that the 
server state is captured by the state of an SQL database and 
therefore the server state update is fully captured by respective 
updates of the tables of the database, which are expressed in 
SQL. Conceptually, the updates indirectly lead to a new page 
data tree, which is the result of the page query on the new 
server state, and consequently to a new rendered page. 
FORWARD makes the following contributions towards rapid, 
declarative programming of Ajax pages: 
 
A minimal SQL extension that is used to create the page data 
tree, and a page unit tree that renders the page data tree. The 
combination enables the developer to avoid multiple language 
programming (JavaScript, SQL, Java) in order to implement 

Ajax pages. Instead the developer declaratively describes the 
reported data and their rendering into Ajax pages. 
 
We chose SQL over XQuery/XML because (a) SQL has a 
much larger programmer audience and installed base (b) SQL 
has a smaller feature set, omitting operators such as // and * 
that have created challenges for efficient query processing and 
view maintenance and do not appear to be necessary for our 
problem, and (c) existing database research and technology 
provide a great leverage for implementation and optimization, 
which enables focus on the truly novel research issues without 
having to re-express already solved problems in XML/X- 
Query or having to re-implement database server 
functionality. Our experience in creating commercial level 
applications and prior academic work in the area indicate that 
if the application does not interface with external systems then 
SQL's expressive power is typically sufficient.  
 
A FORWARD developer avoids the hassle of programming 
JavaScript and Ajax components for partial updates. Instead 
he specifies the unit state using the page data tree, which is a 
declarative function expressed in the SQL ex- tension over the 
state of the database. For example, a map unit (which is a 
wrapper around a Google Maps component) is used by 
specifying the points that should be shown on the map, 
without bothering to specify which points are new, which ones 
are updated, what methods the component covers for 
modifications, etc. Roadmap we present the framework in 
with a running example. A naive implementation of the 
FORWARD's simple programming model would exhibit the 
crippling performance and interface quality problems of pure 
server-side applications. Instead FORWARD achieves the 
performance and interface quality of Ajax pages by solving 
performance optimization problems that would otherwise need 
to be hand- coded by the developer. In particular:  
 
Instead of literally creating the new page data tree, unit tree 
and html/JavaScript page from scratch in each step, 
FORWARD incrementally computes them using their prior 
versions. Since the page data tree is typically fueled by our 
extended SQL queries, FORWARD leverages prior database 
research on incremental view maintenance, essentially treating 
the page data tree as a view. We extend prior work on 
incremental view maintenance to capture (a) nesting, (b) 
variability of the output tuples and (c) ordering, which has 
been neglected by prior work focusing on homogeneous sets 
of tuples. 
 
FORWARD provides an architecture that enables the use of 
massive JavaScript/Ajax component libraries (such as Dojo 
[30]) as page units into FORWARD's framework. The basic 
data tree incremental maintenance algorithm is modified to 
account for the fact that a component may not over methods to 
implement each possible data tree change. Rather a best-effort 
approach is enabled for wrap- ping data tree changes into 
component method calls. The net effect is that FORWARD's 
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ease-of-development is accomplished at an acceptable 
performance penalty over hand-crafted programs. As a data 
point, revising an existing review and re-rendering the page 
takes 42 ms in FORWARD, which compares favorably to 
WAN network latency (50-100 ms and above), and the 
average human reaction time of 200 ms. 
 

IV. CHARACTERIZING COMPLEXITY 
 
Our analysis of our measurement dataset is two-pronged. First, 
in this section, we analyze web pages with respect to various 
complexity metrics. Next, we analyze the impact of these 
metrics on performance. Note that our focus is on capturing 
the complexity of web pages as visible to browsers on client 
devices; we do not intend to capture the complexity of server-
side infrastructure of websites [43]. We consider two high-
level notions of web page complexity. Content complexity 
metrics capture the number and size of objects fetched to load 
the web page and also the different MIME types (e.g., image, 
javascript, CSS, text) across which these  objects are spread. 
Now, loading www.foo.com may require fetching content not 
only from other internal servers such as images.foo.com and 
news.foo.com, but also involve third-party services such as 
CDNs (e.g., Akamai), analytics providers (e.g., Google 
analytics), and social network plugins (e.g., Facebook). 
Service complexity metrics capture the number and 
contributions of the various servers and administrative origins 
involved in loading a web page. We begin with the content-
level metrics before moving on to service-level metrics. In 
each case, we present a breakdown of the metrics across 
different popularity rank ranges (e.g., top 1–1000 vs. 10000–
20000) and across different categories of websites (e.g., 
Shopping vs. News). Here, we only show results for one of the 
vantage points as the results are (expectedly) similar across 
vantage points.  
 

A. Content Complexity 

Number of objects: We begin by looking, at the total number 
of object requests required, i.e., number of HTTP GETs 
issued, to load a web page. Across all the rank ranges, loading 
the base web page requires more than 40 objects to be fetched 
in the median case. We also see that a non-trivial fraction 
(20%) of websites request more than 100–125 objects on their 
landing web page, across the rank ranges. While the top 1– 
400 sites load more objects, the distributions for the different 
rank ranges are qualitatively and quantitatively similar; even 
the lower rank websites have a large number of requests. Next, 
we divide the sites by their categories. For clarity, we only 
focus on the top-two-level categories. To ensure that our 
results are statistically meaningful, Median number of requests 
for objects of different MIME-types across different rank 
ranges. The categories that have at least 50 websites in our 
dataset. The breakdown across the categories shows a 
pronounced difference between categories; the median number 

of objects requested on News sites is nearly 3× the median for 
Business sites. We suspect that this is an artifact of News sites 
tending to cram in more content on their landing pages 
compared to other sites to give readers quick snippets of 
information across different news topics. Types of objects: 
Having considered the total number of object requests, we 
next consider their breakdown by content MIME types. For 
brevity, only the median number of requests for the four most 
popular content types across websites of different rank ranges. 
The first order observation again is that the different rank 
ranges are qualitatively similar in their distribution, with 
higher ranked websites having only slightly more objects of 
each type. However, we find several interesting patterns in the 
prevalence of different types of content. While it should not 
come as a surprise that many websites use these different 
content types, the magnitude of these fractions is surprising. 
For example, we see that, across all rank ranges, more than 
50% of sites fetch at least 6 Javascript ob- jects. Similarly, 
more than 50% of the sites have at least 2 CSS objects. The 
median value for Flash is small; many websites keep their 
landing pages simple and avoid rich Flash content. These 
results are roughly consistent with recent independent 
measurements [31]. The corresponding breakdown for the 
number of objects requested of various content types across 
different categories of websites. Again, we see the News 
category being dominant across different content types. News 
sites load a larger number of objects overall compared to other 
site categories. Hence, a natural follow-up question is whether 
News sites issue requests for a proportionately higher number 
of objects across all content types. Therefore, for each 
website, we normalize the number of objects of each content 
type by the total number of objects for that site. The 
distribution of the median values of the normalized fraction of 
objects of various content types (not shown) presents a slightly 
different picture than that seen with absolute counts. Most 
categories have a very similar normalized contribution from 
all content types in terms of the median value. The only 
significant difference we observe is in the case of Flash 
objects. Kids and Teens sites have a significantly greater 
fraction of Flash objects than sites in other categories.  
 
Bytes downloaded: The above results show the number of 
objects requested across different content types, but do not tell 
us the contribution of these content types to the total number 
of bytes downloaded. Again, for brevity, we summarize the 
full distribution with the median values for different website 
categories. Surprisingly, we find that Javascript objects 
contribute a sizeable fraction of the total number of bytes 
downloaded (the median fraction of bytes is over 25% across 
all categories). Less surprising is that images contribute a 
similar fraction as well. For websites in the Kids and Teens 
category, like in the case of number of objects, the 
contribution of Flash is significantly greater than in other 
categories. As in the case of the number of objects, we see no 
significant difference across different rank ranges. Fraction of 
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objects accounted for by Flash objects, normalized per 
category. 
 

B. Service Complexity 

Anecdotal evidence suggests that the seemingly simple task of 
loading a webpage today requires the client-side browser to 
connect to multiple servers distributed across several 
administrative domains. However, there is no systematic 
understanding of how many different services are involved 
and what they contribute to the overall task. To this end, we 
introduce several service complexity metrics. Number of 
distinct servers: the distribution across websites of the number 
of distinct webservers that a client contacts to render the base 
web page of each website. We identify a server by its fully 
qualified domain name, e.g., bar.foo.com. Across all five rank 
ranges, close to 25–55% of the websites require a client to 
contact at least 10 distinct servers. Thus, even loading simple 
content like the base page of websites requires a client to open 
multiple HTTP/TCP connections to many distinct servers. 
News sites have the most number of distinct servers as well. 
Number of non-origin services: Not all the servers contacted 
in loading a web page may be under the web page provider’s 
control. For example, a typical website today uses content 
distribution networks (e.g., Akamai, Limelight) to distribute 
static content, analytics services (e.g., google-analytics) to 
track user activity, and advertisement services (e.g., 
doubleclick) to monetize visits. Identifying non-origins, 
however, is slightly tricky. The subtle issue at hand is that 
some providers use multiple origins to serve content. For 
example, yahoo.com also owns yimg.com and uses both 
domains to serve content. Even though their top-level domains 
are different, we do not want to count yimg.com as a non-
origin for yahoo.com because they are owned by the same 
entity. To this end, we use the following heuristic. We start by 
using the two level domain identifier to identify an origin; e.g., 
x.foo.com and y.foo.com are clustered to the same logical 
origin foo.com. Next, we consider all two-level domains 
involved in loading the base page of www.foo.com, and 
identify all potential non-origin domains (i.e., two-level 
domain not equal to foo.com). We then do an additional check 
and mark domains as belonging to different origins only if the 
authoritative name servers of the two domains do not match 
[33]. Because yimg.com and yahoo.com share the same 
authoritative name servers, we avoid classifying yimg.com as 
having a different origin from yahoo.com. 
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