
International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

167

Ajax Complexity

Akash K Singh, PhD
IBM Corporation, Sacramento, USA

akashs@us.ibm.com

Abstract
For century, This paper discuss the new era of Internet
application and user experience, Ajax is a new technology and
this paper address the Software system complexity and
Algorithms for better feature and performance.
Keywords: Web Technologies, AJAX, Web2.0.

I. INTRODUCTION

Over the last few years, the web is establishing increased
importance in society with the rise of social networking sites
and the semantic web, facilitated and driven by the popularity
of client-side scripting commonly known as AJAX. These
allow extended functionality and more interactivity in web
applications. Engineering practices dictate that we need to be
able to model these applications. However, languages to
model web applications have fallen behind, with most existing
web modelling languages still solely focused on the hypertext
structure of web sites, with little regard for user interaction or
common web-specific concepts. This paper provides an
overview of technologies in use in today’s web applications,
along with some concepts we propose are necessary to model
these. We present a brief survey of existing web modelling
languages including WebML, UWE, W2000 and OOWS,
along with a discussion of their capability to describe these
new modeling approaches. Finally, we discuss the possibilities
of extending an existing language to handle these new
concepts. Keywords: web engineering, models, interactivity,
AJAX, RIAs, events.

The World Wide Web started out in the early 1990s as an
implementation of a globally distributed hypertext system.
Primitive pieces of software called web browsers allowed
users to render hypertext into visually pleasing representations
that could be navigated by keyboard or mouse. These early
web sites were generally static pages, and were typically
modeled with languages focused on the hypertext structure
and navigation of the web site (Garzotto et al. 1993). The full
integration of hypertext with relational databases allowed the
creation of data-intensive websites, which also necessitated
new modelling concepts and languages (Merialdo et al. 2003).
Currently, the most popular modelling languages for web
applications areWebML (Ceri et al. 2000) and UWE (Koch &
Kraus 2002). Both of these languages represent web
applications using conceptual models (data structure of the
application domain), navigational models, and presentation

models. As such, the ability to express the interactivity of the
application is generally restricted to the navigational models,
which allow designers to visually represent the components,
links and pages of the application. These languages are
excellent at describing older web applications; however
recently the increased use of interactivity, client-side scripting,
and web-specific concepts such as cookies and sessions have
left existing languages struggling to keep up with these Rich
Internet Applications (RIAs: Preciado et al. 2005). In this
paper we aim to review these existing languages and identify
where they are falling short, and how they could be improved.
This paper is organised as follows. Section 2 is an overview of
some of the features possible with rich scripting support. To
model these new features, we propose in Section 3 some new
modelling concepts for interactive web applications. We
present a brief survey of the existing modelling languages
WebML and UWE in Sections 4 and 5, and discuss their
ability to model these new concepts. We briefly mention
W2000, OOWS and other potential languages in Section 6; a
summary of our language evaluations are presented in Table 2.
In the final section, we discuss our findings, provide an
overview of related work, and highlight future work of this
research project. 2 New Features Arguably, the most
important recent feature of the web is the ability to run scripts
on the client (generally through Javascript). Combined with
the ability to access and modify client-side Document Object
Models (DOM:W3C Group 2004) of the browser, and the
ability to compose asynchronous background requests to the
web, these concepts together are commonly referred to as
AJAX (Garrett 2005). AJAX allows applications to provide
rich client-side interfaces, and allows the browser to
communicate with the web without forcing page refreshes;
both fundamental features of RIAs. Technologies like AJAX
support thin client applications that can take full advantage of
the computer power of the clients. These applications reduce
the total cost of ownership (TCO) to organisations as they
are deployed and maintained on directly manageable servers,
and aim to be platform-independent on the client side. To
achieve this, AJAX has had to overcome limitations of the
underlaying HTTP/HTML protocols, such as synchronous and
stateless request processing, and the pull model limitation
where application state changes are always initiated by the
client1. This has resulted in rich applications that use the web
browser as a virtual machine. The impact of these
technologies has been significant; new services such as
Google Docs (Google Inc. 2006) are implementing
collaborative software solutions directly on the web, based on

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

168

the software as a service philosophy, and to some degree
competing with traditional desktop software such as Microsoft
Office. RIAs can also be developed in environments such as
Flash, which are provided as a plugin to existing web
browsers, but can reduce accessibility2. One popular example
of AJAX is to provide an auto-compliable destination address
text field in an e-mail web application. As the user enters
characters into this field, the client contacts the server for
addresses containing these characters, displaying a list of
suggested addresses. This improves usability, potentially
reduces the overall bandwidth of network communication, and
improves interactivity and responsiveness. An investigation of
some of the most popular AJAX-based websites on the web
allows us to identify some of the features that these new
technology provides to web applications. This has allowed us
to develop a comprehensive selection of use cases for AJAX
technologies, which we omit from this paper for brevity.
Without going into detail, and removing features that are
already addressed in existing modeling languages, new
application features that require support include:

1. Storing data on the client and/or server, both volatile and
persistent3;
2. Allowing automatic user authentication based on cookies4;
3. Allowing form validation to occur on the server,on the
client before submission, or in real-time during form entry;
4. Providing different output formats for resources, including
HTML, XML, WML, and Flash, possibly based on the user-
agent of the visitor;
5. Providing web services and data feeds, and integration with
external services and feeds, both on the server and the client;
6. Preventing the user from corrupting the state of a web
application, for example by using browser navigation buttons;
7. Providing more natural user actions such as dragand- drop,
keyboard shortcuts, and interactive maps;
8. Describing visual effects of transitions between application
states5;
9. Having scheduled events on either the client or the server;
10. Allowing web applications to be used offline6;
11. Distributing functionality between the client and the
server, based on client functionality, determined at runtime.

These new features are distributed over both the clients and
servers of web applications. Existing languages based solely
on replacing the entire client-side DOM on each request are
clearly no longer appropriate, as scripting permits modifying
the DOM at runtime. We require a more dynamic language,
which can be extended to handle these new features.

Recently, many new web trends have appeared under the Web
2.0 umbrella, changing the web significantly, from read-only
static pages to dynamic user-created content and rich
interaction. Many Web 2.0 sites rely heavily on AJAX
(Asynchronous JAVASCRIPT and XML) [8], a prominent
enabling technology in which a clever combination of
JAVASCRIPT and Document Object Model (DOM)

manipulation, along with asynchronous client/server delta
communication [16] is used to achieve a high level of user
interactivity on the web. With this new change comes a whole
set of new challenges, mainly due to the fact that AJAX
shatters the metaphor of a web ‘page’ upon which many
classic web technologies are based. One of these challenges is
testing such applications [6, 12, 14]. With the ever-increasing
demands on the quality of Web 2.0 applications, new
techniques and models need to be developed to test this new
class of software. How to automate such a testing technique is
the question that we address in this paper. In order to detect a
fault, a testing method should meet the following conditions
[18, 20]: reach the fault-execution, which causes the fault to
be executed, trigger the error creation, which causes the fault
execution to generate an incorrect intermediate state, and
propagate the error, which enables the incorrect intermediate
state to propagate to the output and cause a detectable output
error. Meeting these reach/trigger/propagate conditions is
more difficult for AJAX applications compared to classical
web applications. During the past years, the general approach
in testing web applications has been to request a response
from the server (via a hypertext link) and to analyze the
resulting HTML. This testing approach based on the page-
sequence paradigm has serious limitations meeting even the
first (reach) condition on AJAX sites. Recent tools such as
Selenium1 use a capture/replay style for testing AJAX
applications. Although such tools are capable of executing the
fault, they demand a substantial amount of manual effort on
the part of the tester. Static analysis techniques have
limitations in revealing faults which are due to the complex
run-time behavior of modern rich web applications. It is this
dynamic run-time interaction that is believed [10] to make
testing such applications a challenging task. On the other
hand, when applying dynamic analysis on this new domain of
web, the main difficulty lies in detecting the various doorways
to different dynamic states and providing proper interface
mechanisms for input values. In this paper, we discuss
challenges of testing AJAX and propose an automated testing
technique for finding faults in AJAX user interfaces. We
extend our AJAX crawler, CRAWLJAX (Sections 4–5), to
infer a state-flow graph for all (client-side) user interface
states. We identify AJAX-specific faults that can occur in such
states and generic and application-specific invariants that can
serve as oracle to detect such faults (Section 6). From the
inferred graph, we automatically generate test cases (Section
7) that cover the paths discovered during the crawling process.
In addition, we use our open source tool called ATUSA
(Section 8), implementing the testing technique, to conduct a
number of case studies (Section 9) to discuss (Section 10) and
evaluate the effectiveness of our approach.

A. Interface Model

A web application’s interface is most obviously characterized
by the variety of UI widgets displayed on each page, which we
represent by elements of the set Widgets. Web applications

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

169

typically distinguish several basic widget classes such as text
fields, radio buttons, drop-down list boxes etc.

(Classes := {ctext, cradio, ccheck, cselect1, cselectn}), which
we identify through the relation class : Widgets → Classes.

For the purpose of input evaluation, it will be helpful to
specify the ranges of values that users can enter/select in
widgets. We specify this in the relation range: Widgets
→P(S). Depending on the class of the widget w, range(w) will
be:
• the generic set S for text fields, which allow any input;
• some fixed subset Sw →S for drop-down list boxes,which
allow a 1-of-n selection;
• the power set P(Sw) of some fixed subset Sw →S for multi-
select boxes, which allow an m-of-n selection;
• some string sw →S for individual check boxes and radio
buttons, which are either undefined or have one particular
value.

In applications based on our model, the placement of widgets
on web pages (from the set Pages) is governed by a series of
hierarchically nested layout containers (Containers) that define
visual alignment and semantic cohesion of widgets. The
nesting relationships between widgets and containers can be
expressed in the relation container: (Widgets→ Containers) →
(Containers->Pages) that indicates in which container or page
s_→Containers → Pages a widget or container s→Widgets ->
Containers is directly contained. To reason about transitive
containment, we also define a convenience relation page:
(Widgets→Containers) → Pages that identifies which page a
widget is placed on by recursive application of the container
relation: p = page(s) : → (p → Pages→p = container(s)) →c
→ Containers : (c = container(s) → p = page(c))

B. Data Model

In our formal model, the variables holding the web
application’s data are represented by elements of the set
Variables. Variables may have different types—in most
applications, we find Boolean, integer, floating-point and
string values or sets

(Types := {P(B),P(Z),P(R),P(S)},respectively).
We express variables’ types by the relationtype : Variables →
Types.

To store the entered content, each widget must be bound to a
variable in the application’s data model. This binding is
modeled by the relation binding : Widgets → Variables. Note
that several widgets can be bound to the same variable (e.g. a
group of check boxes whose combined state is stored as a set
of string values).

C. Evaluation Aspects

Input evaluations are characterized by several criteria that
together constitute particular behavior rules. In this paper, we
will discuss input evaluation for the purpose of deciding
validity, visibility, and availability of widgets, i.e. for interface
responses such as highlighting violating widgets, hiding
invisible widgets, and disabling (e.g. “graying out”)
unavailable widgets, respectively.

At the core of each rule is an expression e → Expressions that
describes the actual evaluation of certain values in order to
arrive at a decision for one of the above purposes. Our model
allows expressions to consist of arbitrarily nestable terms.
These can trivially be literals (out of the universal set L := B
→ R → S) or variables from the data model, but also
comparisons, arithmetic, boolean or string operations, which
can be distinguished by their operator op(e), so Expressions →
(L → Variables) (for the sake of conciseness, we we will not
go into the details of expressions’ concrete structure).
Ultimately, an expression must resolve to a boolean value
indicating the outcome of the decision. Of course, a rule for
any purpose must relate to certain subjects on which the
respective reaction is effected. These may not only be
individual widgets, but also groups of widgets contained
directly or transitively in a particular container or page, so we
define Subjects := Widgets → Containers → Pages. Note that
the subject widgets do not necessarily correspond to the
expression’s parameters (business requirements might e.g.
suggest that only one of several evaluated widgets should be
highlighted as invalid if the validation fails). For the purpose
of input validation, we must consider several additional
characteristics. First, we can distinguish different levels of
validation, which we will describe as Levels := {lexist, ltech,
ldomain}. The most basic level is checking for the existence
of any input in a required field. Next, the technical check
concerns whether a particular input can be converted sensibly
to the given data type. Finally, performing any domain-
specific validation of the input is only sensible if the previous
two validation levels were satisfied. In practice, not all
validation rules would typically be evaluated at the same
time—from our experience from several industrial projects,
we rather identified four common validation triggers

(Triggers := {tblurWidget, tleavePage, tsaveData,
tcommitData}):

Validation may occur upon a widget’s “blurring” (i.e. losing
focus) when the cursor is moved to another widget; upon
leaving a page in order to jump to the next or previous page of
the dialog; upon saving the data entered so far as a draft
version, in order to prevent data loss or continue working on
the dialog at a later time; and finally upon committing all
entered data in order to proceed to the next task in a business
process. By staging the validation through assigning rules to
appropriate triggers, developers can strike a balance between
business requirements and usability considerations, ensuring

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

170

data integrity while maintaining users’ flexibility in working
with the application. In a similar vein, experience shows that
typically not all rule violations are equally serious: Depending
on the business semantics of each rule, developers may choose
to assign different severity levels to it. We therefore
distinguish

Severities := {sinfo, swarning, serror} (with the natural order
sinfo < swarning < serror),

and define different behavior for different severities.

D. Evaluation Rules

Having introduced all aspects characterizing input evaluation,
we can now define the constituent elements of the rules for
different purposes: Rules determining visibility and
availability of widgets are fully described by the deciding
expression and the set of affected subjects, while validation
rules require all of the aspects described above:

Rvisibility : → Expressions×P(Subjects) Ravailability : →
Expressions×P(Subjects) Rvalidation: →
Expressions×P(Subjects) × Levels × Triggers × Severities

While the visibility and availability rules, as well as the
existence and domain validation rules, need to be specified by
the application designer, the necessary technical validation
checks can be inferred from the interface and data model. To
facilitate an integrated display of all validation, we derive the
subset of Rvalidation comprising the technical validation rules
as
{(λ, w, ltech, tblurWidget, serror) | →w → Widgets},
based on the assumption that type or range violations should
be detected as early as possible, and reported as errors. To
access particular components of the rules’ tuples, our
following discussion will assume the existence of the
convenience functions expression, subjects, level, trigger, and
severity that return the respective components of a rule. Since
we will often be interested in all rules pertaining to a certain
subject, we also define the abbreviation Rs p to denote all
rules for a purpose p that affect a subject s. Summing up, we
can describe the static, design-time specification of input
evaluation for a web application as a tuple Aspec := (Widgets,
class, range, Containers, Pages, container, binding, Variables,
type, Rvisibility , Ravailability, Rvalidation).

E. User Interface Behavior

Last but not least, we must define how the user interface reacts
to the various conditions that arise from input evaluation;
namely validation results, visibility and availability of
widgets, and navigation options. These will be covered in the
following subsections.
1) Issue Notifications: We suggest that validation issues be
displayed in two ways: On top of each page, the interface
displays a concise list of human-readable explanations for all

violations that were identified on the current and other pages.
In case several rules are violated for a particular set of
subjects, we display only the most severe notification to
reduce clutter, as indicated by the function issueDisp :
Rvalidation → B:issueDisp(r) : → r → Issues → _r_ → Issues
: (subjects(r_) → subjects(r) → severity(r_) > severity(r))

To further aid the user in identifying the invalid input, we
highlight the respective widget in a color corresponding to the
severity (e.g. red for errors, orange for warnings etc.). Two
relationships influence this coloring scheme: Firstly, if the
subject of a rule is not an individual widget, but rather a
container, the issue is assumed to apply to all directly and
transitively contain widgets, which are all colored accordingly.
Secondly, if a subject is affected by several issues (through
multiple rules or inclusion in affected containers), it will be
colored according to the most severe issue. To indicate this,
the partial relation highlight: Subjects →_ Severities indicates
which severity (if any) applies to a particular subject:
highlight(s) = v: → v = max ({v | v = highlight(container(s))}
→ {v | →r → Rs validation : (issueDisp(r) → v =
severity(r)}))

We assume here that the relation max: P(Severities) →
Severities returns the maximum element from a set of
severities.
2) Visibility: In the previous section, we have already often
relied on an indication of whether a particular interface
component is currently visible. For any given subject, this
state depends both on any explicit visibility rules, and on the
visibility of the surrounding containers, as the relation
isVisible : Subjects → B indicates: isVisible(s) : →
(isVisible(container(s)) → s → Pages) → r → Rvisibility(s):
isSatisfied(expression(r))

In analogy to validation rules, where just one rule violation
suffices to consider an input invalid, we require that all of a
widget’s applicable visibility rules must be satisfied for it to
be visible.
3) Availability: In some use cases, developers may not want to
render a widget invisible, thus hiding it from the interface
model and removing its input from the data model, but would
only like to prevent users from editing the widget’s contents,
even though it remains part of the interface and data model.
This deactivation can be accomplished by “graying out” the
widget or otherwise preventing it from gaining the input focus,
while still remaining visible. In our model, availability rules
are stated and evaluated just like visibility rules, as the relation
isAvailable : Subjects → B indicates: isAvailable(s) : →
(isAvailable(container(s)) → s → Pages) → r →
Ravailability(s): isSatisfied(expression(r))

Note that while visibility affects the data model and is used in
quite a few of the above relations, availability is a pure
interface reaction that does not affect how data is evaluated or
stored.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

171

4) Navigation Opportunities: When considering the
availability of widgets, the navigation buttons on each page
(typically, for navigating forward and backward in a dialog
wizard, saving a draft of the current data, or committing it for
further processing) require special treatment: The user should
be prevented from saving a draft, let alone committing all
input, but possibly even leaving a page, when the model still
violates any validation rules. Since the availability of the
corresponding buttons does not depend directly on the widget
contents, but on the outcome of all validations in the
respective scope, this behavior cannot be specified by means
of regular availability rules. Instead, our model contains built-
in “meta” rules governing navigation opportunities. In the
following predicates, we distinguish between validation rules
that must be satisfied for saving a draft, and a possibly more
restrictive set that must be satisfied for committing the input
for further processing: commitEnabled : → r → Issues :
(trigger(r) → commitBlocks → severity(r) = serror)
saveEnabled : → r → Issues : (trigger(r) → saveBlocks →
severity(r) = serror) leaveEnabled(from) : → r → Issues :
(trigger(r) → leaveBlocks → severity(r) = serror →s →
subjects(r): from = page(s))

F. AJAX Testing Challenges

In AJAX applications, the state of the user interface is
determined dynamically, through event-driven changes in the
browser’s DOM that are only visible after executing the
corresponding JAVASCRIPT code. The resulting challenges
can be explained through the reach/trigger/propagate
conditions as follows. Reach. The event-driven nature of
AJAX presents the first serious testing difficulty, as the event
model of the browser must be manipulated instead of just
constructing and sending appropriate URLs to the server.
Thus, simulating user events on AJAX interfaces requires an
environment equipped with all the necessary technologies,
e.g., JAVASCRIPT, DOM, and the XMLHttpRequest object
used for asynchronous communication. One way to reach the
fault-execution automatically for AJAX is by adopting a web
crawler, capable of detecting and firing events on clickable
elements on the web interface. Such a crawler should be able
to exercise all user interface events of an AJAX site, crawl
through different UI states and infer a model of the
navigational paths and states. We proposed such a crawler for
AJAX, discussed in our previous work [14], Trigger. Once we
are able to derive different dynamic states of an AJAX
application, possible faults can be triggered by generating UI
events. In addition input values can cause faulty states. Thus,
it is important to identify input data entry points, which are
primarily comprised of DOM forms. In addition, executing
different sequences of events can also trigger an incorrect
state. Therefore, we should be able to generate and execute
different event sequences. Propagate. In AJAX, any response
to a client-side event is injected into the single-page interface
and therefore, faults propagate to and are manifested at the
DOM level. Hence, access to the dynamic run-time DOM is a

necessity to be able to analyze and detect the propagated
errors. Automating the process of assessing the correctness of
test case output is a challenging task, known as the oracle
problem [24]. Ideally a tester acts as an oracle who knows the
expected output, in terms of DOM tree, elements and their
attributes, after each state change. When the state space is
huge, it becomes practically impossible. In practice, a baseline
version, also known as the Gold Standard [5], of the
application is used to generate the expected behavior. Oracles
used in the web testing literature are mainly in the form of
HTML comparators [22] and validators [2].

G. Deriving AJAX States

Here, we briefly outline our AJAX crawling technique and
tool called CRAWLJAX [14]. CRAWLJAX can exercise
client side code, and identify clickable elements that change
the state within the browser’s dynamically built DOM. From
these state changes, we infer a state-flow graph, which
captures the states of the user interface, and the possible event-
based transitions between them. We define an AJAX UI state
change as a change on the DOM tree caused either by server-
side state changes propagated to the client, or client-side
events handled by the AJAX engine. We model such changes
by recording the paths (events) to these DOM changes to be
able to navigate between the different states. Inferring the
State Machine. The state-flow graph is created incrementally.
Initially, it only contains the root state and new states are
created and added as the application is crawled and state
changes are analyzed. The following components participate
in the construction of the graph: CRAWLJAX uses an
embedded browser interface (with different implementations:
IE, Mozilla) supporting technologies required by AJAX; A
robot is used to simulate user input (e.g., click, mouseOver,
text input) on the embedded browser; The finite state machine
is a data component maintaining the state-flow graph, as well
as a pointer to the current state; The controller has access to
the browser’s DOM and analyzes and detects state changes. It
also controls the robot’s actions and is responsible for
updating the state machine when relevant changes occur on
the DOM. Detecting Clickables. CRAWLJAX implements an
algorithm which makes use of a set of candidate elements,
which are all exposed to an event type (e.g., click,
mouseOver). In automatic mode, the candidate clickables are
labeled as such based on their HTML tag element name and
attribute constraints. For instance, all elements with a tag div,
a, and span having attribute class="menuitem" are considered
as candidate clickable. For each candidate element, the
crawler fires a click on the element (or other event types, e.g.,
mouseOver), in the embedded browser. Creating States. After
firing an event on a candidate clickable, the algorithm
compares the resulting DOM tree with the way as it was just
before the event fired, in order to determine whether the event
results in a state change. If a change is detected according to
the Levenshtein edit distance, a new state is created and added
to the state-flow graph of the state machine. Furthermore, a

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

172

new edge is created on the graph between the state before the
event and the current state. Processing Document Tree Deltas.
After a new state has been detected, the crawling procedure is
recursively called to find new possible states in the partial
changes made to the DOM tree. CRAWLJAX computes the
differences between the previous document tree and the
current one, by means of an enhanced Diff algorithm to detect
AJAX par- 212 trial updates which may be due to a server
request call that injects new elements into the DOM.
Navigating the States. Upon completion of the recursive call,
the browser should be put back into the previous state. A
dynamically changed DOM state does not register itself with
the browser history engine automatically, so triggering the
‘Back’ function of the browser is usually insufficient. To deal
with this AJAX crawling problem, we save information about
the elements and the order in which their execution results in
reaching a given state. We then can reload the application and
follow and execute the elements from the initial state to the
desired state. CRAWLJAX adopts XPath to provide a reliable,
and persistent element identification mechanism. For each
state changing element, it reverse engineers the XPath
expression of that element which returns its exact location on
the DOM. This expression is saved in the state machine and
used to find the element after a reload. Note that because of
side effects of the element execution and server-side state,
there is no guarantee that we reach the exact same state when
we traverse a path a second time. It is, however, as close as we
can get. Data Entry Points in order to provide input values on
AJAX web applications, we have adopted a reverse
engineering process, similar to [3, 10], to extract all exposed
data entry points. To this end, we have extended our crawler
with the capability of detecting DOM forms on each newly
detected state (this extension is also shown in Algorithm 1).
For each new state, we extract all form elements from the
DOM tree. For each form, a hashcode is calculated on the
attributes (if available) and the HTML structure of the input
fields of the form. With this hashcode, custom values are
associated and stored in a database, which are used for all
forms with the same code. If no custom data fields are
available yet, all data, including input fields, their default
values, and options are extracted from the DOM form. Since
in AJAX forms are usually sent to the server through
JAVASCRIPT functions, the action attribute of the form does
not always correspond to the server-side entry URL. Also, any
element (e.g., A, DIV) could be used to trigger the right
JAVASCRIPT function to submit the form. In this case, the
crawler tries to identify the element that is responsible for
form submission. Note that the tester can always verify the
submit element and change it in the database, if necessary.
Once all necessary data is gathered, the form is inserted
automatically into the database. Every input form provides
thus a data entry point and the tester can later alter the
database with additional desired input values for each form. If
the crawler does find a match in the database, the input values
are used to fill the DOM form and submit it. Upon submission,
the resulting state is analyzed recursively by the crawler and if

a valid state change occurs the state-flow graph is updated
accordingly. Testing AJAX States through Invariants with
access to different dynamic DOM states we can check the user
interface against different constraints. We propose to express
those as invariants on the DOM tree, which we thus can check
automatically in any state. We distinguish between invariants
on the DOM-tree, between DOM-tree states, and application-
specific invariants. Each invariant is based on a fault model
[5], representing AJAX specific faults that are likely to occur
and which can be captured through the given invariant.

II. PROPOSED APPROACH

The goal of the proposed approach is to statically check web
application invocations for correctness and detect errors.
There are three basic steps to the approach (A) identify
generated invocations, (B) compute interfaces and domain
constraints, and (C) check that each invocation matches an
interface. A. Identify Invocation Related Information The goal
of this step is to identify invocation related information in
each component of the web application. The information to be
identified is: (a) the set of argument names that will be
included in the invocation, (b) potential values for each
argument, (c) domain information for each argument, and (d)
the request method of the invocation. The general process of
this step is that the approach computes the possible HTML
pages that each component can generate. During this process,
domain and value information is identified by tracking the
source of each substring in the computed set of pages. Finally,
the computed pages and substring source information are
combined to identify the invocation information. 1) Compute
Possible HTML Pages: The approach analyzes a web
application to compute the HTML pages each component can
generate. Prior work by the author [4] is extended, to compute
these pages in such a way as to preserve domain information
about each invocation. The approach computes the fixed point
solution to the data-flow equations and at the end of the
computation, the fragment associated with the root method of
each component contains the set of possible HTML pages that
could be generated by executing the component. 2) Identify
Domain and Value Information: The approach identifies
domain and value information for each argument in an
invocation. The key insight for this part of the approach is that
the source of the substrings used to define invocations in an
HTML page can provide useful information about the domain
and possible values of each argument. For example, if a
substring used to define the value of an invocation originates
from a call to StringBuilder.append(int), this indicates that the
argument’s domain is of type integer. To identify this type of
information, strings from certain types of sources are
identified and annotated using a process similar to static
tainting. Then the strings and their corresponding annotations
are tracked as the approach computes the fixed point solution
to the equations. The mechanism for identifying and tracking
string sources starts with the resolve function, which analyzes

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

173

a node n in an application and computes a conservative
approximation of the string values that could be generated at
that node. The general intuition is that when the resolve
function analyzes a string source that can indicate domain or
value information, a special domain and value (DV) function
is used to complete the analysis. The DV function returns a
finite state automaton (FSA) defined as the quintuple (S, S0,
F) whose accepted language is the possible values that could
be generated by the expression. In addition, the DV function
also defines two domain type, where T is a basic type of
character, integer, float, long, double, or string; and V : S that
maps each transition to a symbol in or a special symbol that
denotes any value. D is used to track the inferred domain of a
substring and V is used to track possible values. A DV
function is defined for each general type of string source. For
the purpose of the description of the DV functions below, e
refers to any transition (S) defined by and the function L(e)
returns the symbol associated with the transition e. Functions
that return a string variable: Substrings originating from these
types of functions can have any value and a domain of string.
This is represented as V (e) and D(e) string. String constants:
The string constant provides a value for the argument and a
domain of string. This is represented as V (e) = L(e) and D(e)
= string. Member of a collection: For example, a string
variable defined by a specific member of a list of strings.
More broadly, of the form v = collection hTi[x] where v is the
string variable, collection contains objects of type T, and x
denotes the index of the collection that defines v. In this case,
a domain can be provided based on the type of object
contained in the collection. This is represented as D(e) = T,
and V (e) = collection[x] if the value is resolvable or V (e)
otherwise. Conversion of a basic type to a string: For example,
Integer.toString(). More broadly any function convert(X)! S
where X is a basic type and S is a string type. This operation
implies that the string should be a string representation of type
X. This is represented as D(e) = X, and V (e) if X is defined
by a variable or V (e) = L(e) otherwise. Append a basic type to
a string: For example, a call to StringBuilder.append(int).
More broadly, append(S,X) ! S0 where S is a string type, X is
a basic type, and S0 is the string representation of the
concatenation of the two arguments. In this case, the domain
of the substring that was appended to S should be X. This is
represented as D(eX) = X. V (eX) if X is defined by a variable
or V (eX) = L(eX) otherwise. The subscripts denote the subset
of transitions defined by the FSA of the string representation
of X.

3) Combining Information: The final part of identifying
invocation related information is to combine the information
identified by computing the HTML pages and the domain and
value tracking. The key insight for this step is that substrings
of the HTML pages that syntactically define an invocation’s
value will also have annotations from the DV functions. To
identify this information, a custom parser is used to parse each
of the computed HTML pages and recognize HTML tags
while maintaining and recording any annotations. Example:

Using the equations listed in Figure 3, the Out[exitNode] of
servlet OrderStatus is equal to {{2, 5–12, 14–17, 22}, {2, 5–
12, 19–22}. The analysis performs resolve on each of the
nodes in each of the sets that comprise Out[exitNode]. Nodes
2, 5, 7–12, 14, 16, 17, 19, 20, and 22 involve constants, so
resolve returns the values of the constants and the domain
information is any string (*). Nodes 6 and 15 originate from
special string sources. The variable oid is defined by a
function that returns strings and can be of any value (*), and
the variable quant is an append of a basic type, so it is marked
as type int. After computing the resolve function for each of
the nodes, the final value of fragments[service] is comprised
of two web pages, which differ only in that one traverses the
true branch at line 13 and therefore includes an argument for
quant and a different value for task The approach then parses
the HTML to identify invocations. By examining the
annotations associated with the substring that defines each
argument’s value, the value for arguments oid and quant are
identified. The <select> tag has three different options that can
each supply a different value. So three copies are made of
each of the two web form based invocations. Each copy is
assigned one of the three possible values for the shipto
argument. The final result is the identification of six
invocations originating from OrderStatus. Each tuple in the
lists -the name, domain type, and values of the identified
argument.

A. Identify Interfaces

This step of the proposed approach identifies interface
information for each component of a web application. The
proposed approach extends prior work in interface analysis [5]
to also identify the HTTP request method for each interface.
The specific mechanism for specifying HTTP request methods
depends on the framework. In the Java Enterprise Edition
(JEE) framework, the name of the entry method first accessed
specifies its expected request method. For example, the doPost
or doGet method indicates that the POST or GET request
methods, respectively, will be used to decode arguments. The
proposed approach builds a call graph of the component and
marks all methods that are reachable from the specially named
root methods as having the request method of the originating
method. Example: ProcessOrder can accept two interfaces due
to the branch taken at line 17: (1) {oid, task, shipto, other} and
(2) {oid, task, shipto, other, quant}. From the implementation
of ProcessOrder it is possible to infer domain information for
some of the parameters. From this information, the first
interface is determined to have an IDC of
int(shipto).(shipto=1_shipto=2).task=”purchase”; and the
second interface has an IDC of
int(shipto).(shipto=1_shipto=2).task=”modify”.int(quant).
Unless otherwise specified, the domain of a parameter is a
string. Lastly, by traversing the call graph of ProcessOrder all
parameters (and therefore, all interfaces) are identified as
having originated from a method that expects a POST request.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

174

B. Verify Invocations

The third step of the approach checks each invocation to
ensure that it matches an interface of the invocation’s target.
An invocation matches an interface if the following three
conditions hold: (1) the request method of the invocation is
equal to the request method of the interface; (2) the set of the
interface’s parameter names and the invocation’s argument
names are equal; and (3) the domains and values of the
invocation satisfy an IDC of the interface. For the third
condition, domain and value constraints are checked. The
domain of an argument is considered to match the domain of a
parameter if both are of the same type or if the value of the
argument can be successfully converted to the corresponding
parameter’s domain type. For example, if the parameter
domain constraint is Integer and the argument value is “5,”
then the constraint would be satisfied. Example: Consider the
interfaces identified and the invocations. Each of the six
invocations is checked to see if it matches either of the two
interfaces. Only invocation 2 represents a correct invocation
and the rest will be identified as errors.

C. Evaluation

The evaluation measures the precision of the reported results.
The proposed approach was implemented as a prototype tool,
WAIVE+. The subjects used in the evaluation are four Java
Enterprise Edition (JEE) based web applications: Bookstore,
Daffodil, Filelister, and JWMA. These applications range in
size from 8,600 to 29,000 lines of code. All of the applications
are available as open source and are implemented using a mix
of static HTML, JavaScript, Java servlets, and regular Java
code. To address the research questions, WAIVE+ was run on
the four applications. For each application the reported
invocation errors were inspected. Table II shows the results of
inspecting the reported invocations. Each invocation error was
classified as either a confirmed error or a false positive.
Invocations in both classifications were also further classified
based on whether the error reported was due to a violation of
one of the correctness properties, the invocation did not match
an interface because of an incorrectly specified request
method (R.M.), the argument names did not match the
parameter names of any interface of the target (N.), and the
value and domain information of an invocation did not match
the interface domain constraint (IDC). The table also reports
the total number of invocations identified for each application
(# Invk.). As the results in Table II show, WAIVE+ identified
69 erroneous invocations and had 20 false positives. Prior
approaches can only detect errors related to names, so the
comparable total of errors for WAIVE was 33 erroneous
invocations and 19 false positives. These results indicate that
the new domain information checks resulted in the discovery
of 36 additional errors and 1 false positive. Overall, the results
are very encouraging. The approach identified 36 new errors
that had been previously undetectable while only producing
one additional false positive.

III. CONCURRENT AJAX CRAWLING

The algorithm and its implementation for crawling AJAX, as
just described, is sequential, depth-first, and single-threaded.
Since we crawl the Web application dynamically, the crawling
runtime is determined by the following factors.
(1) The speed at which the Web server responds to HTTP
requests.
(2) Network latency.
(3) The crawler’s internal processes (e.g., analyzing the DOM,
firing events, updating the state machine).
(4) The speed of the browser in handling the events and
request/response pairs, modifying the DOM, and rendering the
user interface.
We have no influence on the first two factors and already have
many optimization heuristics for the third step. Therefore, we
focus on the last factor, the browser. Since the algorithm has
to wait some considerable amount of time for the browser to
finish its tasks after each event, our hypothesis is that we can
decrease the total runtime by adopting concurrent crawling
through multiple browsers.

A. Multi-threaded, Multi-Browser Crawling

The idea is to maintain a single state machine and split the
original controller into a new controller and multiple crawling
nodes. The controller is the single main thread monitoring the
total crawl procedure. In this new setting, each crawling node
is responsible for deriving its corresponding robot and browser
instances to crawl a specific path. Compared with Figure 3,
the new architecture is capable of having multiple crawler
instances, running from a single controller. All the crawlers
share the same state machine. The state machine makes sure
every crawler can read and update the state machine in a
synchronized way. This way, the operation of discovering new
states can be executed in parallel.

B. Partition Function

To divide the work over the crawlers in a multi-threaded
manner, a partition function must be designed. The
performance of a concurrent approach is determined by the
quality of its partition function [Garavel et al. 2001]. A
partition function can be either static or dynamic. With a static
partition function, the division of work is known in advance,
before executing the code. When a dynamic partition function
is used, the decision of which thread will execute a given node
is made at runtime. Our algorithm infers the state-flow graph
of an AJAX application dynamically and incrementally. Thus,
due to this dynamic nature, we adopt a dynamic partition
function. The task of our dynamic partition function is to
distribute the work equally over all the participating crawling
nodes. While crawling an AJAX application, we define work
as bringing the browser back into a given state and exploring
the first unexplored candidate state from that state. Our
proposed partition function operates as follows. After the

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

175

discovery of a new state, if there are still unexplored candidate
clickables left in the previous state, that state is assigned to
another thread for further exploration. The processor chosen
will be the one with the least amount of work left. Visualizes
our partition function for concurrent crawling of a simple Web
application. In the Index state, two candidate clickables are
detected that can lead: S 1 and S 11. The initial thread
continues with the exploration of the states S 1, S 2, S 3, S 4,
and finishes in S 5, in a depth-first manner. Simultaneously, a
new thread is branched off to explore state S 11. This new
thread (thread #2) first reloads the browser to Index and then
goes into S 11. In state S 2 and S 6, this same branching
mechanism happens, which results in a total of five threads.
Now that the partition function has been introduced, the
original sequential crawling algorithm (Algorithm 1) can be
changed into a concurrent version.

We consider the following Ajax Complexity field equations
defined over an open bounded piece of network and /or feature

space dRΩ ⊂ . They describe the dynamics of the mean
anycast of each of p node populations.

|
1

() (,) (,) [(((,),))]

(1)
(,), 0,1 ,

(,) (,) [,0]

p

i i ij j ij j
j

ext
i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T

τ

φ

Ω
=


+ = − −




+ ≥ ≤ ≤
 = ∈ −

∑∫

We give an interpretation of the various parameters and
functions that appear in (1),Ω is finite piece of nodes and/or
feature space and is represented as an open bounded set of

dR . The vector r and r represent points in Ω . The
function : (0,1)S R→ is the normalized sigmoid function:

1

() (2)
1 z

S z
e−=

+

It describes the relation between the input rate iv of

population i as a function of the packets potential, for

example, [()].i i i i iV v S V hσ= = − We note V the p −

dimensional vector 1(,...,).pV V The p function

, 1,..., ,i i pφ = represent the initial conditions, see below. We

note φ the p − dimensional vector 1(,...,).pφ φ The p

function , 1,..., ,ext
iI i p= represent external factors from

other network areas. We note extI the p − dimensional

vector 1(,...,).ext ext
pI I The p p× matrix of functions

, 1,...,{ }ij i j pJ J == represents the connectivity between

populations i and ,j see below. The p real values

, 1,..., ,ih i p= determine the threshold of activity for each

population, that is, the value of the nodes potential

corresponding to 50% of the maximal activity. The p real

positive values , 1,..., ,i i pσ = determine the slopes of the

sigmoids at the origin. Finally the p real positive values

, 1,..., ,il i p= determine the speed at which each anycast

node potential decreases exponentially toward its real value.

We also introduce the function : ,p pS R R→ defined by

1 1 1() [(()),..., ())],p pS x S x h S hσ σ= − − and the

diagonal p p× matrix 0 1(,...,).pL diag l l= Is the intrinsic

dynamics of the population given by the linear response of

data transfer. ()i

d
l

dt
+ is replaced by 2()i

d
l

dt
+ to use the

alpha function response. We use ()i

d
l

dt
+ for simplicity

although our analysis applies to more general intrinsic
dynamics. For the sake, of generality, the propagation delays
are not assumed to be identical for all populations, hence they

are described by a matrix (,)r rτ whose element (,)ij r rτ is

the propagation delay between population j at r and

population i at .r The reason for this assumption is that it is
still unclear from anycast if propagation delays are
independent of the populations. We assume for technical

reasons that τ is continuous, that is
20(,).p pC Rτ ×

+∈ Ω

Moreover packet data indicate that τ is not a symmetric

function i.e., (,) (,),ij ijr r r rτ τ≠ thus no assumption is

made about this symmetry unless otherwise stated. In order to
compute the righthand side of (1), we need to know the node
potential factor V on interval [, 0].T− The value of T is

obtained by considering the maximal delay:

 ,
, (,)

max (,) (3)m i j
i j r r

r rτ τ
∈Ω×Ω

=

Hence we choose mT τ=

C. Mathematical Framework

A convenient functional setting for the non-delayed packet

field equations is to use the space 2(,)pF L R= Ω which is a

Hilbert space endowed with the usual inner product:

1

, () () (1)
p

i iF
i

V U V r U r dr
Ω

=

=∑∫

To give a meaning to (1), we defined the history space
0([,0],)mC C Fτ= − with [,0]sup () ,

mt t Fτφ φ∈ −=

which is the Banach phase space associated with equation (3).

Using the notation () (), [,0],t mV V tθ θ θ τ= + ∈ − we

write (1) as

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

176

.

0 1

0

() () () (), (2)
,

ext
tV t L V t L S V I t

V Cφ

 = − + +


= ∈

Where

1 : ,

(.,) (, (.,))

L C F

J r r r d rφ φ τ
Ω

→
 → − ∫

Is the linear continuous operator satisfying

2 21 (,)
.p pL R

L J ×Ω
≤ Notice that most of the papers on this

subject assume Ω infinite, hence requiring .mτ = ∞

Proposition 1.0 If the following assumptions are satisfied.

1. 2 2(,),p pJ L R ×∈ Ω

2. The external current 0(,),extI C R F∈

3. 2

0 2(,),sup .p p
mC Rτ τ τ×

+ Ω
∈ Ω ≤

Then for any ,Cφ ∈ there exists a unique solution
1 0([0,),) ([, ,)mV C F C Fτ∈ ∞ ∩ − ∞ to (3)

Notice that this result gives existence on ,R+ finite-time

explosion is impossible for this delayed differential equation.
Nevertheless, a particular solution could grow indefinitely, we
now prove that this cannot happen.

D. Boundedness of Solutions

A valid model of neural networks should only feature bounded
packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by

the same constant R if max () .ext

t R F
I I t+∈

≡ < ∞

Proof :Let us defined :f R C R+× → as
2

0 1

1
(,) (0) () (), ()

2

def
ext F

t t t F

d V
f t V LV L S V I t V t

dt
= − + + =

We note 1,...mini p il l==

2

(,) () () ()t F F F
f t V l V t p J I V t≤ − + Ω +

Thus, if

2.

() 2 , (,) 0
2

def def
F

tF

p J I lR
V t R f t V

l
δ

Ω +
≥ = ≤ − =− <

Let us show that the open route of F of center 0 and radius

, ,RR B is stable under the dynamics of equation. We know

that ()V t is defined for all 0t s≥ and that 0f < on ,RB∂

the boundary of RB . We consider three cases for the initial

condition 0.V If 0 C
V R< and set

sup{ | [0,], () }.RT t s t V s B= ∀ ∈ ∈ Suppose that ,T R∈

then ()V T is defined and belongs to ,RB the closure of ,RB

because RB is closed, in effect to ,RB∂ we also have

2
| (,) 0t T TF

d
V f T V

dt
δ= = ≤ − < because () .RV T B∈∂

Thus we deduce that for 0ε > and small enough,

() RV T Bε+ ∈ which contradicts the definition of T. Thus

T R∉ and RB is stable. Because f<0 on , (0)R RB V B∂ ∈∂

implies that 0, () Rt V t B∀ > ∈ . Finally we consider the case

(0) RV CB∈ . Suppose that 0, () ,Rt V t B∀ > ∉ then

2
0, 2 ,

F

d
t V

dt
δ∀ > ≤ − thus ()

F
V t is monotonically

decreasing and reaches the value of R in finite time when

()V t reaches .RB∂ This contradicts our assumption. Thus

0 | () .RT V T B∃ > ∈

Proposition 1.1 : Let s and t be measured simple functions

on .X for ,E Mε define

() (1)
E

E s dφ µ= ∫

Then φ is a measure on M .

() (2)
X X X

s t d s d tdµ µ µ+ = +∫ ∫ ∫
Proof : If s and if 1 2, ,...E E are disjoint members of M

whose union is ,E the countable additivity of µ shows that

1 1 1

1 1 1

() () ()

() ()

n n

i i i i r
i i r

n

i i r r
r i r

E A E A E

A E E

φ α µ α µ

α µ φ

∞

= = =

∞ ∞

= = =

= ∩ = ∩

= ∩ =

∑ ∑ ∑

∑∑ ∑

Also, () 0,ϕ φ = so that ϕ is not identically∞ .

Next, let s be as before, let 1,..., mβ β be the distinct values

of t,and let { : () }j jB x t x β= = If ,ij i jE A B= ∩ the

() () ()
ij

i j ijE
s t d Eµ α β µ+ = +∫

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

177

and () ()
ij ij

i ij j ijE E
sd td E Eµ µ α µ β µ+ = +∫ ∫ Thus (2)

holds with ijE in place of X . Since X is the disjoint union

of the sets (1 ,1),ijE i n j m≤ ≤ ≤ ≤ the first half of our

proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose
complement is connected, if f is a continuous complex

function on K which is holomorphic in the interior of , and if
0,ε > then there exists a polynomial P such that

() ()f z P z ε= < for all z Kε . If the interior of K is

empty, then part of the hypothesis is vacuously satisfied, and
the conclusion holds for every ()f C Kε . Note that K need

to be connected.
Proof: By Tietze’s theorem, f can be extended to a

continuous function in the plane, with compact support. We
fix one such extension and denote it again by f . For any

0,δ > let ()ω δ be the supremum of the numbers

2 1() ()f z f z− Where 1z and 2z are subject to the

condition 2 1z z δ− ≤ . Since f is uniformly continous, we

have
0

lim () 0 (1)
δ

ω δ
→

= From now on, δ will be

fixed. We shall prove that there is a polynomial P such that

 () () 10,000 () () (2)f z P z z Kω δ ε− <

By (1), this proves the theorem. Our first objective is the

construction of a function ' 2(),cC RεΦ such that for all z

() () (), (3)

2 ()
()() , (4)

f z z

z

ω δ
ω δ
δ

− Φ ≤

∂Φ <

And
1 ()()

() (), (5)
X

z d d i
z

ζ ζ η ζ ξ η
π ζ

∂ΦΦ = − = +
−∫∫

Where X is the set of all points in the support of Φ whose
distance from the complement of K does not δ . (Thus X
contains no point which is “far within” K .) We construct Φ
as the convolution of f with a smoothing function A. Put

() 0a r = if ,r δ> put

2

2
2 2

3
() (1) (0), (6)

r
a r r δ

πδ δ
= − ≤ ≤

And define

() () (7)A z a z=

For all complex z . It is clear that ' 2()cA C Rε . We claim that

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
δ δ

=

∂ =

∂ = <

∫∫

∫∫

∫∫

The constants are so adjusted in (6) that (8) holds. (Compute
the integral in polar coordinates), (9) holds simply because A
has compact support. To compute (10), express A∂ in polar

coordinates, and note that 0,A
θ

∂ =∂

',A ar
∂ = −∂

Now define

2 2

() () () () (11)
R R

z f z Ad d A z f d dζ ξ η ζ ζ ξ ηΦ = − = −∫∫ ∫∫

Since f and A have compact support, so does Φ . Since

2

() ()

[() ()] () (12)
R

z f z

f z f z A d dζ ξ ξ η

Φ −

= − −∫∫

And () 0A ζ = if ,ζ δ> (3) follows from (8). The

difference quotients of A converge boundedly to the

corresponding partial derivatives, since ' 2()cA C Rε . Hence

the last expression in (11) may be differentiated under the
integral sign, and we obtain

2

2

2

()() ()() ()

()()()

[() ()]()() (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

ζ ζ ξ η

ζ ζ ξ η

ζ ζ ξ η

∂Φ = ∂ −

= − ∂

= − − ∂

∫∫

∫∫

∫∫

The last equality depends on (9). Now (10) and (13) give (4).

If we write (13) with xΦ and yΦ in place of ,∂Φ we see

that Φ has continuous partial derivatives, if we can show that
0∂Φ = in ,G where G is the set of all z Kε whose

distance from the complement of K exceeds .δ We shall do
this by showing that
 () () (); (14)z f z z GεΦ =

Note that 0f∂ = in G , since f is holomorphic there. Now

if ,z Gε then z ζ− is in the interior of K for all ζ with

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

178

.ζ δ< The mean value property for harmonic functions

therefore gives, by the first equation in (11),

2

2

0 0

0

() () ()

2 () () () () (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

δ π θ

δ

θ

π

Φ = −

= = =

∫ ∫

∫ ∫∫

For all z Gε , we have now proved (3), (4), and (5) The

definition of X shows that X is compact and that X can be

covered by finitely many open discs 1,..., ,nD D of radius

2 ,δ whose centers are not in .K Since 2S K− is

connected, the center of each jD can be joined to ∞ by a

polygonal path in 2S K− . It follows that each jD contains a

compact connected set ,jE of diameter at least 2 ,δ so that

2
jS E− is connected and so that .jK E φ∩ = with

2r δ= . There are functions 2()j jg H S Eε − and constants

jb so that the inequalities.

2

2

50
(,) , (16)

1 4,000
(,) (17)

j

j

Q z

Q z
z z

ζ
δ

δζ
ζ ζ

<

− <
− −

Hold for jz E∉ and ,jDζ ∈ if

2(,) () () () (18)j j j jQ z g z b g zζ ζ= + −

Let Ω be the complement of 1nE E∪ ∪ Then Ω is an

open set which contains .K Put 1 1X X D= ∩ and

1 1() (...),j j jX X D X X −= ∩ − ∪ ∪ for 2 ,j n≤ ≤

Define

(,) (,) (,) (19)j jR z Q z X zζ ζ ζε ε= Ω

And
1

() () () (,) (2 0)

()
X

F z R z d d

z

ζ ζ ζ η
π

ε

= ∂ Φ

Ω

∫∫

Since,

1

1
() ()() (,) , (21)

i

j
j X

F z Q z d dζ ζ ξ η
π=

= ∂Φ∑ ∫∫

(18) shows that F is a finite linear combination of the

functions jg and 2
jg . Hence ().F Hε Ω By (20), (4), and

(5) we have

2 ()
() () | (,)

1
| () (22)

X

F z z R z

d d z
z

ω δ ζ
πδ

ξ η ε
ζ

− Φ <

− Ω
−

∫∫

Observe that the inequalities (16) and (17) are valid with R in

place of jQ if Xζ ε and .z ε Ω Now fix .z ε Ω , put

,iz eθζ ρ= + and estimate the integrand in (22) by (16) if

4 ,ρ δ< by (17) if 4 .δ ρ≤ The integral in (22) is then

seen to be less than the sum of

4

0

50 1
2 808 (23)d

δ
π ρ ρ πδ

δ ρ
 + = 
 

∫

And
2

24

4,000
2 2,000 . (24)d

δ

δπ ρ ρ πδ
ρ

∞
=∫

Hence (22) yields

() () 6,000 () () (25)F z z zω δ ε− Φ < Ω

Since (), ,F H Kε Ω ⊂ Ω and 2S K− is connected,

Runge’s theorem shows that F can be uniformly
approximated on K by polynomials. Hence (3) and (25) show
that (2) can be satisfied. This completes the proof.

Lemma 1.0 : Suppose ' 2(),cf C Rε the space of all

continuously differentiable functions in the plane, with
compact support. Put

1
(1)

2
i

x y

 ∂ ∂∂ = + ∂ ∂ 

Then the following “Cauchy formula” holds:

2

1 ()()
()

() (2)
R

f
f z d d

z

i

ζ ξ η
π ζ

ζ ξ η

∂= −
−

= +

∫∫

Proof: This may be deduced from Green’s theorem. However,
here is a simple direct proof:

Put (,) (), 0,ir f z re rθϕ θ θ= + > real

 If ,iz reθζ = + the chain rule gives

1
()() (,) (3)

2
i i

f e r
r r

θζ ϕ θ
θ

∂ ∂ ∂ = + ∂ ∂ 

The right side of (2) is therefore equal to the limit, as 0,ε →

of

2

0

1
(4)

2

i
d dr

r r

π

ε

ϕ ϕ θ
θ

∞ ∂ ∂ − + ∂ ∂ 
∫ ∫

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

179

For each 0,r ϕ> is periodic in ,θ with period 2π . The

integral of /ϕ θ∂ ∂ is therefore 0, and (4) becomes

2 2

0 0

1 1
(,) (5)

2 2
d dr d

r

π π

ε

ϕθ ϕ ε θ θ
π π

∞ ∂− =
∂∫ ∫ ∫

As 0, (,) ()f zε ϕ ε θ→ → uniformly. This gives (2)

If X aα ∈ and []1,... nX k X Xβ ∈ , then

X X X aα β α β+= ∈ , and so A satisfies the condition ()∗ .

Conversely,

,

()() (),
nA

c X d X c d X finitesumsα β α β
α β α β

α α ββ

+

∈ ∈

=∑ ∑ ∑
�

and so if A satisfies ()∗ , then the subspace generated by the

monomials ,X aα α ∈ , is an ideal. The proposition gives a

classification of the monomial ideals in []1,... nk X X : they

are in one to one correspondence with the subsets A of
n�

satisfying ()∗ . For example, the monomial ideals in []k X

are exactly the ideals (), 1nX n≥ , and the zero ideal

(corresponding to the empty setA). We write |X Aα α ∈

for the ideal corresponding to A (subspace generated by the

,X aα α ∈).

LEMMA 1.1. Let S be a subset of
n� . The the ideal a

generated by ,X Sα α ∈ is the monomial ideal

corresponding to

{ }| ,
df

n nA some Sβ β α α∈ − ∈ ∈= � �

Thus, a monomial is in a if and only if it is divisible by one

of the , |X Sα α ∈

PROOF. Clearly A satisfies ()∗ , and |a X Aβ β⊂ ∈ .

Conversely, if Aβ ∈ , then
nβ α− ∈� for some Sα ∈ ,

and X X X aβ α β α−= ∈ . The last statement follows from

the fact that | nX Xα β β α⇔ − ∈� . Let
nA⊂ � satisfy

()∗ . From the geometry of A , it is clear that there is a finite

set of elements { }1,... sS α α= of A such that

{ }2| ,n
i iA some Sβ β α α= ∈ − ∈ ∈� � (The 'i sα

are the corners of A) Moreover, |
df

a X Aα α ∈= is

generated by the monomials ,i
iX Sα α ∈ .

DEFINITION 1.0. For a nonzero ideal a in

[]1 ,..., nk X X , we let (())LT a be the ideal generated by

{ }() |LT f f a∈

LEMMA 1.2 Let a be a nonzero ideal in []1 ,..., nk X X ;

then (())LT a is a monomial ideal, and it equals

1((),..., ())nLT g LT g for some 1,..., ng g a∈ .

PROOF. Since (())LT a can also be described as the ideal

generated by the leading monomials (rather than the leading
terms) of elements of a .

THEOREM 1.2. Every ideal a in []1 ,..., nk X X is

finitely generated; more precisely, 1(,...,)sa g g= where

1,..., sg g are any elements of a whose leading terms

generate ()LT a

PROOF. Let f a∈ . On applying the division algorithm,

we find

[]1 1 1... , , ,...,s s i nf a g a g r a r k X X= + + + ∈ ,

where either 0r = or no monomial occurring in it is divisible

by any ()iLT g . But i i
r f a g a= − ∈∑ , and therefore

1() () ((),..., ())sLT r LT a LT g LT g∈ = , implies that

every monomial occurring in r is divisible by one in

()iLT g . Thus 0r = , and 1(,...,)sg g g∈ .

DEFINITION 1.1. A finite subset { }1,| ..., sS g g= of an

ideal a is a standard (
..

()Gr obner bases for a if

1((),..., ()) ()sLT g LT g LT a= . In other words, S is a

standard basis if the leading term of every element of a is

divisible by at least one of the leading terms of the ig .

THEOREM 1.3 The ring 1[,...,]nk X X is Noetherian i.e.,

every ideal is finitely generated.

PROOF. For 1,n = []k X is a principal ideal domain,

which means that every ideal is generated by single element.
We shall prove the theorem by induction on n . Note that the

obvious map 1 1 1[,...][] [,...]n n nk X X X k X X− → is an

isomorphism – this simply says that every polynomial f in

n variables 1,... nX X can be expressed uniquely as a

polynomial in nX with coefficients in 1[,...,]nk X X :

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

180

1 0 1 1 1 1(,...) (,...) ... (,...)r
n n n r nf X X a X X X a X X− −= + +

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is []A X

PROOF. For a polynomial

1
0 1 0() ... , , 0,r r

r if X a X a X a a A a−= + + + ∈ ≠

r is called the degree of f , and 0a is its leading coefficient.

We call 0 the leading coefficient of the polynomial 0.
 Let a be an ideal in []A X . The leading coefficients

of the polynomials in a form an ideal
'a in A, and since A

is Noetherian,
'a will be finitely generated. Let 1,..., mg g be

elements of a whose leading coefficients generate
'a , and let

r be the maximum degree of ig . Now let ,f a∈ and

suppose f has degree s r> , say, ...sf aX= + Then
'a a∈ , and so we can write

, ,i ii

i i

a ba b A

a leading coefficient of g

= ∈

=
∑

Now

, deg(),is r

i i i if b g X r g
−− =∑ has degree deg()f< .

By continuing in this way, we find that

1mod(,...)t mf f g g≡ With tf a polynomial of

degree t r< . For each d r< , let da be the subset of A

consisting of 0 and the leading coefficients of all polynomials

in a of degree ;d it is again an ideal in A . Let

,1 ,,...,
dd d mg g be polynomials of degree d whose leading

coefficients generate da . Then the same argument as above

shows that any polynomial df in a of degree d can be

written 1 ,1 ,mod(,...)
dd d d d mf f g g−≡ With 1df − of

degree 1d≤ − . On applying this remark repeatedly we find

that
1 01,1 1, 0,1 0,(,... ,... ,...)

rt r r m mf g g g g
−− −∈ Hence

1 01 1,1 1, 0,1 0,(,... ,... ,..., ,...,)

rt m r r m mf g g g g g g
−− −∈

 and so the polynomials
01 0,,..., mg g generate a

One of the great successes of category theory in computer
science has been the development of a “unified theory” of the
constructions underlying denotational semantics. In the
untyped λ -calculus, any term may appear in the function
position of an application. This means that a model D of the
λ -calculus must have the property that given a term t whose

interpretation is ,d D∈ Also, the interpretation of a

functional abstraction like xλ . x is most conveniently

defined as a function from Dto D , which must then be

regarded as an element of D. Let []: D D Dψ → → be the

function that picks out elements of D to represent elements of

[]D D→ and []: D D Dφ → → be the function that

maps elements of D to functions of D. Since ()fψ is

intended to represent the function f as an element of D, it

makes sense to require that (()) ,f fφ ψ = that is,

[]D Do idψ ψ →= Furthermore, we often want to view every

element of D as representing some function from D to D and
require that elements representing the same function be equal
– that is

(())

D

d d

or

o id

ψ ϕ

ψ φ

=

=

The latter condition is called extensionality. These conditions

together imply that andφ ψ are inverses--- that is, D is

isomorphic to the space of functions from D to D that can be

the interpretations of functional abstractions: []D D D≅ →

.Let us suppose we are working with the untyped
calculusλ − , we need a solution ot the equation

[],D A D D≅ + → where A is some predetermined

domain containing interpretations for elements of C. Each
element of D corresponds to either an element of A or an

element of [],D D→ with a tag. This equation can be

solved by finding least fixed points of the function

[]()F X A X X= + → from domains to domains --- that

is, finding domains X such that [],X A X X≅ + → and

such that for any domain Y also satisfying this equation, there
is an embedding of X to Y --- a pair of maps

R

f

f

X Y�

Such that
R

X

R
Y

f o f id

f o f id

=

⊆

Where f g⊆ means that f approximates g in some

ordering representing their information content. The key shift
of perspective from the domain-theoretic to the more general
category-theoretic approach lies in considering F not as a
function on domains, but as a functor on a category of
domains. Instead of a least fixed point of the function, F.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

181

Definition 1.3: Let K be a category and :F K K→ as a
functor. A fixed point of F is a pair (A,a), where A is a K-
object and : ()a F A A→ is an isomorphism. A prefixed

point of F is a pair (A,a), where A is a K-object and a is any
arrow from F(A) to A
Definition 1.4 : An chainω − in a category K is a diagram
of the following form:

1 2

1 2
of f f

oD D D∆ = → → →
Recall that a cocone µ of an chainω − ∆ is a K-object X

and a collection of K –arrows { }: | 0i iD X iµ → ≥ such

that 1i i io fµ µ += for all 0i ≥ . We sometimes write

: Xµ ∆ → as a reminder of the arrangement of 'sµ

components Similarly, a colimit : Xµ ∆ → is a cocone with

the property that if
': Xν ∆ → is also a cocone then there

exists a unique mediating arrow
':k X X→ such that for all

0,, i ii v k oµ≥ = . Colimits of chainsω − are sometimes

referred to as limco itsω − . Dually, an
op chainω − in K

is a diagram of the following form:
1 2

1 2
of f f

oD D D∆ = ← ← ←

A cone : Xµ → ∆ of an

op chainω − ∆ is a K-object X and a collection of K-arrows

{ }: | 0i iD iµ ≥ such that for all 10, i i ii f oµ µ +≥ = . An

opω -limit of an
op chainω − ∆ is a cone : Xµ → ∆

with the property that if
': Xν → ∆ is also a cone, then there

exists a unique mediating arrow
':k X X→ such that for

all 0, i ii okµ ν≥ = . We write k⊥ (or just ⊥) for the

distinguish initial object of K, when it has one, and A⊥→
for the unique arrow from ⊥ to each K-object A. It is also

convenient to write
1 2

1 2
f f

D D−∆ = → → to denote all of

∆ except oD and 0f . By analogy, µ −
 is { }| 1i iµ ≥ . For

the images of ∆ and µ under F we write

1 2() () ()

1 2() () () ()
oF f F f F f

oF F D F D F D∆ = → → →

and { }() () | 0iF F iµ µ= ≥

We write iF for the i-fold iterated composition of F – that is,
1 2() , () (), () (())oF f f F f F f F f F F f= = = ,etc.

With these definitions we can state that every monitonic
function on a complete lattice has a least fixed point:

Lemma 1.4. Let K be a category with initial object ⊥ and let

:F K K→ be a functor. Define the chainω − ∆ by
2! () (! ()) (! ())

2() ()
F F F F F

F F
⊥→ ⊥ ⊥→ ⊥ ⊥→ ⊥

∆ =⊥ ⊥ ⊥→ → →

If both : Dµ ∆ → and () : () ()F F F Dµ ∆ → are

colimits, then (D,d) is an intial F-algebra, where
: ()d F D D→ is the mediating arrow from ()F µ to the

cocone µ −

Theorem 1.4 Let a DAG G given in which each node is a
random variable, and let a discrete conditional probability
distribution of each node given values of its parents in G be
specified. Then the product of these conditional distributions
yields a joint probability distribution P of the variables, and
(G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let

1 2, ,........ nX X X be the resultant ordering. Next define.

1 2 1 1

2 2 1 1

(, ,....) (|) (|)...

.. (|) (|),
n n n n nP x x x P x pa P x Pa

P x pa P x pa
− −=

Where iPA is the set of parents of iX of in G and

(|)i iP x pa is the specified conditional probability

distribution. First we show this does indeed yield a joint

probability distribution. Clearly, 1 20 (, ,...) 1nP x x x≤ ≤ for

all values of the variables. Therefore, to show we have a joint
distribution, as the variables range through all their possible
values, is equal to one. To that end, Specified conditional
distributions are the conditional distributions they notationally
represent in the joint distribution. Finally, we show the
Markov condition is satisfied. To do this, we need show for
1 k n≤ ≤ that

whenever

() 0, (|) 0

(|) 0

(| ,) (|),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

≠ ≠
≠
=

Where kND is the set of nondescendents of kX of in G.

Since k kPA ND⊆ , we need only show

(|) (|)k k k kP x nd P x pa= . First for a given k , order the

nodes so that all and only nondescendents of kX precede kX

in the ordering. Note that this ordering depends on k , whereas
the ordering in the first part of the proof does not. Clearly then

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

182

{ }

{ }

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X

−

+ +

=

=

follows
kd∑

We define the
thm cyclotomic field to be the field

[] / (())mQ x xΦ

Where ()m xΦ is the

thm cyclotomic

polynomial. [] / (())mQ x xΦ ()m xΦ has degree ()mϕ
over Q since ()m xΦ has degree ()mϕ . The roots of

()m xΦ are just the primitive
thm roots of unity, so the

complex embeddings of [] / (())mQ x xΦ are simply the

()mϕ maps

[]: / (()) ,

1 , (,) 1,

() ,

k m

k
k m

Q x x C

k m k m where

x

σ

σ ξ

Φ
≤ =

=

a

p

mξ being our fixed choice of primitive
thm root of unity. Note

that ()k
m mQξ ξ∈ for every ;k it follows that

() ()k
m mQ Qξ ξ= for all k relatively prime to m . In

particular, the images of the iσ coincide, so

[] / (())mQ x xΦ is Galois over Q. This means that we can

write ()mQ ξ for [] / (())mQ x xΦ without much fear of

ambiguity; we will do so from now on, the identification being

.m xξ a One advantage of this is that one can easily talk

about cyclotomic fields being extensions of one another,or
intersections or compositums; all of these things take place
considering them as subfield of .C We now investigate some
basic properties of cyclotomic fields. The first issue is whether
or not they are all distinct; to determine this, we need to know

which roots of unity lie in ()mQ ξ .Note, for example, that if

mis odd, then mξ− is a 2 thm root of unity. We will show that

this is the only way in which one can obtain any non-
thm

roots of unity.

LEMMA 1.5 If mdividesn , then ()mQ ξ is contained in

()nQ ξ

PROOF. Since ,
n

m
mξ ξ= we have (),m nQξ ξ∈ so the

result is clear

LEMMA 1.6 If mand nare relatively prime, then

 (,) ()m n nmQ Qξ ξ ξ=

and

 () ()m nQ Q Qξ ξ∩ =

(Recall the (,)m nQ ξ ξ is the compositum of

() ())m nQ and Qξ ξ

PROOF. One checks easily that m nξ ξ is a primitive
thmn root

of unity, so that

() (,)mn m nQ Qξ ξ ξ⊆

[] [][](,) : () : (:

() () ();
m n m nQ Q Q Q Q Q

m n mn

ξ ξ ξ ξ
ϕ ϕ ϕ

≤
= =

Since []() : ();mnQ Q mnξ ϕ= this implies that

(,) ()m n nmQ Qξ ξ ξ=

We know that (,)m nQ ξ ξ has degree

()mnϕ over Q, so we must have

 [](,) : () ()m n mQ Q nξ ξ ξ ϕ=

and

[](,) : () ()m n mQ Q mξ ξ ξ ϕ=

[]() : () () ()m m nQ Q Q mξ ξ ξ ϕ∩ ≥

And thus that () ()m nQ Q Qξ ξ∩ =

PROPOSITION 1.2 For any mand n

[],(,) ()m n m nQ Qξ ξ ξ=

And

(,)() () ();m n m nQ Q Qξ ξ ξ∩ =

here [],m n and (),m n denote the least common multiple and

the greatest common divisor of mand ,n respectively.

PROOF. Write 1 1
1 1......k ke fe f

k km p p and p p= where the

ip are distinct primes. (We allow i ie or f to be zero)

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

183

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max() max()1, ,1
1 1

() () ()... ()

() () ()... ()

(,) ()........ () ()... ()

() ()... () ()

()....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

=

=

=

=

=

[]

max() max()1, ,1
1 1........

,

)

()

();

e ef k fkp p

m n

Q

Q

ξ

ξ

=

=

An entirely similar computation shows that

(,)() () ()m n m nQ Q Qξ ξ ξ∩ =

Mutual information measures the information transferred

when ix is sent and iy is received, and is defined as

2

()
(,) log (1)

()

i

i
i i

i

xP y
I x y bits

P x
=

In a noise-free channel, each iy is uniquely connected to the

corresponding ix , and so they constitute an input –output pair

(,)i ix y for which

 2

1
() 1 (,) log

()
i

i j
j i

xP and I x yy P x
= = bits; that is, the

transferred information is equal to the self-information that

corresponds to the input ix
In a very noisy channel, the output

iy and input ix would be completely uncorrelated, and so

() ()i
i

j

xP P xy = and also (,) 0;i jI x y = that is, there is no

transference of information. In general, a given channel will
operate between these two extremes. The mutual information
is defined between the input and the output of a given channel.
An average of the calculation of the mutual information for all
input-output pairs of a given channel is the average mutual
information:

2
. .

(
(,) (,) (,) (,) log

()

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

= =  
 
 

∑ ∑
 bits per

symbol . This calculation is done over the input and output
alphabets. The average mutual information. The following
expressions are useful for modifying the mutual information
expression:

(,) () () () ()

() () ()

() () ()

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x

y
P y P P xx

xP x P P yy

= =

=

=

∑

∑

Then

.

2
.

2
.

2
.

2

2

(,) (,)

1
(,) log

()

1
(,) log

()

1
(,) log

()

1
() () log

()

1
() log ()

()

(,) () ()

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y
xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y

=

 
=  

 

 
 

−  
 
 

 
 
 

 =   

=

= −

∑

∑

∑

∑

∑

∑

Where 2,

1
() (,) log

()
i ji j

i

j

XH P x yY xP y

=∑ is

usually called the equivocation. In a sense, the equivocation
can be seen as the information lost in the noisy channel, and is
a function of the backward conditional probability. The

observation of an output symbol jy provides

() ()XH X H Y− bits of information. This difference is the

mutual information of the channel. Mutual Information:
Properties Since

() () () ()ji
j i

j i

yxP P y P P xy x=

The mutual information fits the condition
(,) (,)I X Y I Y X=

And by interchanging input and output it is also true that

(,) () ()YI X Y H Y H X= −

Where

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

184

2

1
() () log

()j
j j

H Y P y
P y

=∑

This last entropy is usually called the noise entropy. Thus, the
information transferred through the channel is the difference
between the output entropy and the noise entropy.
Alternatively, it can be said that the channel mutual
information is the difference between the number of bits
needed for determining a given input symbol before knowing
the corresponding output symbol, and the number of bits
needed for determining a given input symbol after knowing
the corresponding output symbol

(,) () ()XI X Y H X H Y= −

As the channel mutual information expression is a difference
between two quantities, it seems that this parameter can adopt
negative values. However, and is spite of the fact that for some

, (/)j jy H X y can be larger than ()H X , this is not

possible for the average value calculated over all the outputs:

2 2
, ,

() (,)
(,) log (,) log

() () ()

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
=∑ ∑

Then

,

() ()
(,) (,) 0

(,)
i j

i j
i j i j

P x P y
I X Y P x y

P x y
− = ≤∑

Because this expression is of the form

2
1

log () 0
M

i
i

i i

Q
P

P=
≤∑

The above expression can be applied due to the factor

() (),i jP x P y which is the product of two probabilities, so

that it behaves as the quantity iQ , which in this expression is

a dummy variable that fits the condition 1ii
Q ≤∑ . It can be

concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input
and the output are independent of each other. A related
entropy called the joint entropy is defined as

2
,

2
,

2
,

1
(,) (,) log

(,)

() ()
(,) log

(,)

1
(,) log

() ()

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y

=

=

+

∑

∑

∑

Theorem 1.5: Entropies of the binary erasure channel (BEC)
The BEC is defined with an alphabet of two inputs and three
outputs, with symbol probabilities.

1 2() () 1 ,P x and P xα α= = − and transition

probabilities

3 2

2 1

3

1

1

2

3

2

() 1 () 0,

() 0

()

() 1

y yP p and Px x

yand P x

yand P px

yand P px

= − =

=

=

= −

Lemma 1.7. Given an arbitrary restricted time-discrete,
amplitude-continuous channel whose restrictions are

determined by sets nF and whose density functions exhibit no

dependence on the states , let n be a fixed positive integer,

and ()p x an arbitrary probability density function on

Euclidean n-space. (|)p y x for the density

1 1(,..., | ,...)n n np y y x x and nF for F
.

For any real

number a, let

(|)
(,) : log (1)

()

p y x
A x y a

p y

 
= > 
 

Then for each positive integeru , there is a code (, ,)u n λ
such that

{ } { }(,) (2)aue P X Y A P X Fλ −≤ + ∉ + ∉

Where
{ }

{ }

(,) ... (,) , (,) () (|)

... ()

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

∈ = =

∈ =

∫ ∫

∫ ∫

Proof: A sequence
(1)x F∈ such that

{ }
{ }

1
(1)| 1

: (,) ;

x

x

P Y A X x

where A y x y A

ε

ε

∈ = ≥ −

=

Choose the decoding set 1B to be (1)x
A . Having chosen

(1) (1),........, kx x −
and 1 1,..., kB B − , select

kx F∈ such that

()

1
()

1

| 1 ;k

k
k

ix
i

P Y A B X x ε
−

=

 ∈ − = ≥ − 
 

U

Set ()

1

1k

k

k ix i
B A B

−

=
= −U , If the process does not terminate

in a finite number of steps, then the sequences
()ix and

decoding sets , 1,2,..., ,iB i u= form the desired code. Thus

assume that the process terminates after t steps. (Conceivably
0t =). We will show t u≥ by showing that

{ } { }(,)ate P X Y A P X Fε −≤ + ∉ + ∉ . We proceed as

follows.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

185

Let

{ }
1

(,)

. (0,).

(,) (,)

() (|)

() (|) ()

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x

φ
=

∈

∈

∈ ∩

= = =

∈ =

=

= +

∫

∫ ∫

∫ ∫ ∫

U

E. Algorithms

Ideals. Let A be a ring. Recall that an ideal a in A is a
subset such that a is subgroup of A regarded as a group under
addition;

 ,a a r A ra A∈ ∈ ⇒ ∈
The ideal generated by a subset S of A is the intersection of all
ideals A containing a ----- it is easy to verify that this is in fact
an ideal, and that it consist of all finite sums of the form

i i
rs∑ with ,i ir A s S∈ ∈ . When { }1,....., mS s s= , we

shall write 1(,.....,)ms s for the ideal it generates.

Let a and b be ideals in A. The set { }| ,a b a a b b+ ∈ ∈ is

an ideal, denoted by a b+ . The ideal generated by

{ }| ,ab a a b b∈ ∈ is denoted by ab . Note that

ab a b⊂ ∩ . Clearly abconsists of all finite sums i i
a b∑

with ia a∈ and ib b∈ , and if 1(,...,)ma a a= and

1(,...,)nb b b= , then 1 1(,..., ,...,)i j m nab a b a b a b= .Let a

be an ideal of A. The set of cosets of a in A forms a ring

/A a , and a a a+a is a homomorphism : /A A aφ a .

The map
1()b bφ−a is a one to one correspondence

between the ideals of /A a and the ideals of A containinga
An ideal p if prime if p A≠ and ab p a p∈ ⇒ ∈ or

b p∈ . Thus p is prime if and only if /A p is nonzero and

has the property that 0, 0 0,ab b a= ≠ ⇒ = i.e.,

/A p is an integral domain. An ideal m is maximal if

|m A≠ and there does not exist an ideal n contained strictly

between mand A . Thus mis maximal if and only if /A m
has no proper nonzero ideals, and so is a field. Note that m
maximal ⇒ mprime. The ideals of A B× are all of the
form a b× , with a and b ideals in A and B . To see this,

note that if c is an ideal in A B× and (,)a b c∈ , then

(,0) (,)(1,0)a a b c= ∈ and (0,) (,)(0,1)b a b c= ∈ . This

shows that c a b= × with

{ }| (,)a a a b c some b b= ∈ ∈

and

{ }| (,)b b a b c some a a= ∈ ∈

Let A be a ring. An A -algebra is a ring B together with a

homomorphism :Bi A B→ . A homomorphism of A -algebra

B C→ is a homomorphism of rings : B Cϕ → such that

(()) ()B Ci a i aϕ = for all . An A -algebra B is said

to be finitely generated (or of finite-type over A) if there exist

elements 1,..., nx x B∈ such that every element of B can be

expressed as a polynomial in the ix with coefficients in ()i A

, i.e., such that the homomorphism []1,..., nA X X B→

sending iX to ix is surjective. A ring homomorphism

A B→ is finite, and B is finitely generated as an A-

module. Let k be a field, and let Abe a k -algebra. If 1 0≠

in A , then the map k A→ is injective, we can identify k
with its image, i.e., we can regard k as a subring ofA . If 1=0

in a ring R, the R is the zero ring, i.e., { }0R= . Polynomial

rings. Let k be a field. A monomial in 1,..., nX X is an

expression of the form 1
1 ... ,naa

n jX X a N∈ . The total

degree of the monomial is ia∑ . We sometimes abbreviate it

by 1, (,...,) n
nX a aα α = ∈�

.
The elements of the

polynomial ring []1,..., nk X X are finite sums

1

1 1.... 1 , ,n

n n

aa
a a n a a jc X X c k a∈ ∈∑ �

With the obvious notions of equality, addition and
multiplication. Thus the monomials from basis for

[]1,..., nk X X as a k -vector space. The ring

[]1,..., nk X X is an integral domain, and the only units in it

are the nonzero constant polynomials. A polynomial

1(,...,)nf X X is irreducible if it is nonconstant and has only

the obvious factorizations, i.e., f gh g= ⇒ or h is

constant. Division in []k X . The division algorithm allows

us to divide a nonzero polynomial into another: let f and g

be polynomials in []k X with 0;g ≠ then there exist unique

polynomials [],q r k X∈ such that f qg r= + with either

0r = or degr < degg . Moreover, there is an algorithm for

a A∈

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

186

deciding whether ()f g∈ , namely, find r and check

whether it is zero. Moreover, the Euclidean algorithm allows

to pass from finite set of generators for an ideal in []k X to a

single generator by successively replacing each pair of
generators with their greatest common divisor.

 (Pure) lexicographic ordering (lex). Here monomials are
ordered by lexicographic(dictionary) order. More precisely, let

1(,...)na aα = and 1(,...)nb bβ = be two elements of n� ;

then α β> and X Xα β> (lexicographic ordering) if, in

the vector difference α β− ∈� , the left most nonzero entry

is positive. For example,

 2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z> > . Note that this isn’t

quite how the dictionary would order them: it would put
XXXYYZZZZ after XXXYYZ . Graded reverse
lexicographic order (grevlex). Here monomials are ordered by
total degree, with ties broken by reverse lexicographic

ordering. Thus, α β> if i ia b>∑ ∑ , or i ia b=∑ ∑

and in α β− the right most nonzero entry is negative. For

example:
4 4 7 5 5 4X Y Z X Y Z> (total degree greater)

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ> > .

Orderings on []1,... nk X X . Fix an ordering on the

monomials in []1,... nk X X . Then we can write an element

f of []1,... nk X X in a canonical fashion, by re-ordering its

elements in decreasing order. For example, we would write
2 2 3 2 24 4 5 7f XY Z Z X X Z= + − +

as
3 2 2 2 25 7 4 4 ()f X X Z XY Z Z lex= − + + +

or
2 2 2 3 24 7 5 4 ()f XY Z X Z X Z grevlex= + − +

Let []1,..., na X k X Xα
α ∈∑ , in decreasing order:

0 1

0 1 0 1 0..., ..., 0f a X Xα α
α α α α α= + + > > ≠

Then we define.

• The multidegree of f to be multdeg(f)= 0α ;

• The leading coefficient of f to be LC(f)=
0

aα ;

• The leading monomial of f to be LM(f) = 0Xα ;

• The leading term of f to be LT(f) = 0

0
a Xα

α

For the polynomial 24 ...,f XY Z= + the multidegree is

(1,2,1), the leading coefficient is 4, the leading monomial is
2XY Z , and the leading term is 24XY Z . The division

algorithm in []1,... nk X X . Fix a monomial ordering in 2�

. Suppose given a polynomial f and an ordered set

1(,...)sg g of polynomials; the division algorithm then

constructs polynomials 1,... sa a and r such that

1 1 ... s sf a g a g r= + + + Where either 0r = or no

monomial in r is divisible by any of 1(),..., ()sLT g LT g

Step 1: If 1() | ()LT g LT f , divide 1g into f to get

[]1 1 1 1
1

()
, ,...,

() n

LT f
f a g h a k X X

LT g
= + = ∈

If 1() | ()LT g LT h , repeat the process until

1 1 1f a g f= + (different 1a) with 1()LT f not divisible by

1()LT g . Now divide 2g into 1f , and so on, until

1 1 1... s sf a g a g r= + + + With 1()LT r not divisible by

any 1(),... ()sLT g LT g Step 2: Rewrite 1 1 2()r LT r r= + ,

and repeat Step 1 with 2r for f :

1 1 1 3... ()s sf a g a g LT r r= + + + + (different 'ia s)

Monomial ideals. In general, an ideal a will contain a
polynomial without containing the individual terms of the

polynomial; for example, the ideal 2 3()a Y X= − contains
2 3Y X− but not 2Y or 3X .

DEFINITION 1.5. An ideal a is monomial if

c X a X aα α
α ∈ ⇒ ∈∑

 all α with 0cα ≠ .

PROPOSITION 1.3. Let a be a monomial ideal, and let

{ }|A X aαα= ∈ . Then A satisfies the condition

, ()nAα β α β∈ ∈ ⇒ + ∈ ∗� And a is the k -

subspace of []1,..., nk X X generated by the ,X Aα α ∈ .

Conversely, of A is a subset of n� satisfying ()∗ , then the

k-subspace a of []1,..., nk X X generated by

{ }|X Aα α ∈ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal

a is the k -subspace of []1,..., nk X X

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

187

generated by the set of monomials it contains. If
X aα ∈

 and

[]1,..., nX k X Xβ ∈
 .

If a permutation is chosen uniformly and at random from the

!n possible permutations in ,nS then the counts ()n
jC of

cycles of length j are dependent random variables. The joint

distribution of () () ()
1(,...,)n n n

nC C C= follows from

Cauchy’s formula, and is given by

()

1 1

1 1 1
[] (,) 1 () , (1.1)

! !
j

nn
cn

j
j j j

P C c N n c jc n
n j c= =

 
= = = = 

 
∑ ∏

for nc +∈� .

Lemma1.7 For nonnegative integers

1,...,

[]()

11 1

,

1
() 1 (1.4)

j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j == =

     
 = ≤           

∑∏ ∏

Proof. This can be established directly by exploiting

cancellation of the form
[] !/ 1/ ()!jm
j j j jc c c m= − when

,j jc m≥ which occurs between the ingredients in Cauchy’s

formula and the falling factorials in the moments. Write

jm jm=∑ . Then, with the first sum indexed by

1(,...) n
nc c c += ∈� and the last sum indexed by

1(,...,) n
nd d d += ∈� via the correspondence

,j j jd c m= − we have

[] []() ()

1 1

[]

: 1 1

11 1

() [] ()

()
1

!

1 1
1

()!

j j

j

j

j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

= =

≥ = =

== =

 
= = 

 

 
= = 

 

 
= = − 

 

∑∏ ∏

∑ ∑ ∏

∑ ∑∏ ∏

This last sum simplifies to the indicator 1(),m n≤

corresponding to the fact that if 0,n m− ≥ then 0jd = for

,j n m> − and a random permutation in n mS − must have

some cycle structure 1(,...,)n md d − . The moments of ()n
jC

follow immediately as

{ }() []() 1 (1.2)n r r
jE C j jr n−= ≤

We note for future reference that (1.4) can also be written in
the form

[] []()

11 1

() 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
== =

     
= ≤     

    
∑∏ ∏

Where the jZ are independent Poisson-distribution random

variables that satisfy () 1/jE Z j=

The marginal distribution of cycle counts provides a formula

for the joint distribution of the cycle counts ,n
jC we find the

distribution of n
jC using a combinatorial approach combined

with the inclusion-exclusion formula.

Lemma 1.8. For 1 ,j n≤ ≤

 [/]
()

0

[] (1) (1.1)
! !

k ln j k
n l

j
l

j j
P C k

k l

− −−

=
= = −∑

Proof. Consider the set I of all possible cycles of length

,j formed with elements chosen from { }1,2,... ,n so that

[]/j jI n= . For each ,Iα ∈ consider the “property” Gα of

having ;α that is, Gα is the set of permutations nSπ ∈

such that α is one of the cycles of .π We then have

()!,G n jα = − since the elements of { }1,2,...,n not in α

must be permuted among themselves. To use the inclusion-

exclusion formula we need to calculate the term ,rS which is

the sum of the probabilities of the r -fold intersection of
properties, summing over all sets of r distinct properties.
There are two cases to consider. If the r properties are
indexed by r cycles having no elements in common, then the
intersection specifies how rj elements are moved by the

permutation, and there are ()!1()n rj rj n− ≤ permutations

in the intersection. There are [] / (!)rj rn j r such intersections.

For the other case, some two distinct properties name some
element in common, so no permutation can have both these
properties, and the r -fold intersection is empty. Thus

[]

()!1()

1 1
1()

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

= − ≤

× = ≤

Finally, the inclusion-exclusion series for the number of
permutations having exactly k properties is

,
0

(1)l
k l

l

k l
S

l +
≥

+ 
−  

 
∑

Which simplifies to (1.1) Returning to the original hat-check
problem, we substitute j=1 in (1.1) to obtain the distribution of
the number of fixed points of a random permutation. For

0,1,..., ,k n=

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

188

()
1

0

1 1
[] (1) , (1.2)

! !

n k
n l

l

P C k
k l

−

=

= = −∑

and the moments of ()
1

nC follow from (1.2) with 1.j = In

particular, for 2,n ≥ the mean and variance of ()
1

nC are both

equal to 1. The joint distribution of () ()
1(,...,)n n

bC C for any

1 b n≤ ≤ has an expression similar to (1.7); this too can be

derived by inclusion-exclusion. For any 1(,...,) b
bc c c += ∈�

with ,im ic=∑

1

() ()
1

...

01 1

[(,...,)]

1 1 1 1
(1) (1.3)

! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
+ +

≥= =
≤ −

=

     = −    
     

∑

∑∏ ∏

The joint moments of the first b counts () ()
1 ,...,n n

bC C can be

obtained directly from (1.2) and (1.3) by setting

1 ... 0b nm m+ = = =

The limit distribution of cycle counts
It follows immediately from Lemma 1.2 that for each fixed

,j as ,n → ∞

() 1/[] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k

−
−= → =

So that ()n
jC converges in distribution to a random variable

jZ having a Poisson distribution with mean 1/ ;j we use the

notation ()n
j d jC Z→ where (1/)j oZ P j� to describe

this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in

distribution to a Poisson process of � with intensity 1j − .

That is, as ,n → ∞
() ()
1 2 1 2(, ,...) (, ,...) (1.1)n n

dC C Z Z→

Where the , 1, 2,...,jZ j = are independent Poisson-

distributed random variables with
1

()jE Z
j

=

Proof. To establish the converges in distribution one shows

that for each fixed 1,b ≥ as ,n → ∞

 () ()
1 1[(,...,)] [(,...,)]n n

b bP C C c P Z Z c= → =

Error rates
The proof of Theorem says nothing about the rate of
convergence. Elementary analysis can be used to estimate this

rate when 1b = . Using properties of alternating series with

decreasing terms, for 0,1,..., ,k n=

()
1 1

1 1 1
() [] []

! (1)! (2)!

1

!(1)!

nP C k P Z k
k n k n k

k n k

− ≤ = − =
− + − +

≤
− +

It follows that

1 1
()
1 1

0

2 2 1
[] [] (1.11)

(1)! 2 (1)!

n nn
n

k

n
P C k P Z k

n n n

+ +

=

−≤ = − = ≤
+ + +∑

Since
1

1

1 1 1
[] (1 ...) ,

(1)! 2 (2)(3) (1)!

e
P Z n

n n n n n

−

> = + + + <
+ + + + +

We see from (1.11) that the total variation distance between

the distribution ()
1()nL C of ()

1
nC and the distribution 1()L Z

of 1Z

Establish the asymptotics of ()()n
nA C Ρ   under conditions

0()A and 01(),B where

{ }
'

() ()

1 1

() 0 ,
i i

n n
n ij

i n r j r

A C C
≤ ≤ + ≤ ≤

= =I I

and
''(/) 1 ()g

i i idr r O iζ −= − = as ,i → ∞ for some
' 0.g > We start with the expression

'

'
() 0

0

0
1

1

[()]
[()]

[()]

1 (1) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z n
P A C

P T Z n

E
ir

θ
≤ ≤
+ ≤ ≤

==
=

 
− + 

 
∏

{ }{ }

'
0

1 1

1

1 '
1,2,7

[()]

exp [log(1)]

1 (()) (1.2)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑

and

{ }{ }

'
0

1 1

1

1
1,2,7

[()]

exp [log(1)]

1 (()) (1.3)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑

Where { }
'
1,2,7 ()nϕ refers to the quantity derived from 'Z . It

thus follows that () (1)[()]n d
nP A C Kn θ− −� for a constant

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

189

K , depending on Z and the '
ir and computable explicitly

from (1.1) – (1.3), if Conditions 0()A and 01()B are satisfied

and if
'

()g
i O iζ ∗ −= from some ' 0,g > since, under these

circumstances, both { }
1 '

1,2,7 ()n nϕ− and { }
1

1,2,7 ()n nϕ− tend

to zero as .n → ∞ In particular, for polynomials and square
free polynomials, the relative error in this asymptotic

approximation is of order
1n−
 if ' 1.g >

For 0 / 8b n≤ ≤ and 0,n n≥ with 0n

{ }7,7

(([1,]), ([1,]))

(([1,]), ([1,]))

(,),

TV

TV

d L C b L Z b

d L C b L Z b

n bε
≤
≤

� �

Where { }7,7 (,) (/)n b O b nε = under Conditions 0 1(), ()A D

and 11()B

Since, by the Conditioning Relation,

0 0([1,] | ()) ([1,] | ()),b bL C b T C l L Z b T Z l= = =
� �

It follows by direct calculation that

0 0

0

0

(([1,]), ([1,]))

((()), (()))

max [()]

[()]
1 (1.4)

[()]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n

∈

=

= =

 = −− = 

∑

� �

Suppressing the argument Z from now on, we thus obtain

(([1,]), ([1,]))TVd L C b L Z b
� �

0
0 0

[]
[] 1

[]
bn

b
r n

P T n r
P T r

P T n≥ +

 = −= = − = 
∑

[/2]
0

0
/2 0 0

[]
[]

[]

n
b

b
r n r b

P T r
P T r

P T n> =

=≤ = +
=∑ ∑

0
0

[]([] []
n

b bn bn
s

P T s P T n s P T n r
= +

 × = = − − = − 
 
∑

[/2]

0 0
/2 0

[] []
n

b b
r n r

P T r P T r
> =

≤ = + =∑ ∑

{ }[/2]

0
0 0

[/2]

0 0
0 [/2] 1

[] []
[]

[]

[] [] [] / []

n
bn bn

b
s n

n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n

=

= = +

= − − = −
× =

=

+ = = = − =

∑

∑ ∑

 The first sum is at most 1
02 ;bn ET− the third is bound by

{ }

0 0
/2

10.5(1)

(max []) / []

2 (/ 2,) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n Pθ

ε
θ

< ≤
= =

≤

{ }

{ }

[/2] [/2]
2

0 010.8
0 0

10.8 0

3 1
4 () [] []

[0,1] 2

12 ()

[0,1]

n n

b b
r s

b

n
n n P T r P T s r s

P

n ET

P n

θ

θ

φ
θ

φ
θ

− ∗

= =

∗

= = −

≤

∑ ∑

Hence we may take

{ }
{ }

{ }

10.81
07,7

10.5(1)

6 ()
(,) 2 () 1

[0,1]

6
(/ 2,) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P

θ

θ

φ
ε

θ

ε
θ

∗
−

  = + 
  

+

Required order under Conditions 0 1(), ()A D and 11(),B if

() .S ∞ < ∞ If not, { } ()10.8 nφ∗ can be replaced by { } ()10.11 nφ ∗

in the above, which has the required order, without the

restriction on the ir implied by ()S ∞ < ∞ . Examining the

Conditions 0 1(), ()A D and 11(),B it is perhaps surprising to

find that 11()B is required instead of just 01();B that is, that

we should need 1

2
()a

ill
l O iε −

≥
=∑ to hold for some

1 1a > . A first observation is that a similar problem arises

with the rate of decay of 1iε as well. For this reason, 1n is

replaced by 1n
�

. This makes it possible to replace condition

1()A by the weaker pair of conditions 0()A and 1()D in the

eventual assumptions needed for { } ()7,7 ,n bε to be of order

(/);O b n the decay rate requirement of order
1i γ− −

 is

shifted from 1iε itself to its first difference. This is needed to

obtain the right approximation error for the random mappings
example. However, since all the classical applications make

far more stringent assumptions about the 1, 2,i lε ≥ than are

made in 11()B . The critical point of the proof is seen where

the initial estimate of the difference

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

190

() ()[] [1]m m
bn bnP T s P T s= − = + . The factor { }10.10 (),nε

which should be small, contains a far tail element from 1n
�

 of

the form 1 1() (),n u nθφ ∗+ which is only small if 1 1,a >

being otherwise of order 11()aO n δ− + for any 0,δ > since

2 1a > is in any case assumed. For / 2,s n≥ this gives rise

to a contribution of order 11()aO n δ− − + in the estimate of the

difference [] [1],bn bnP T s P T s= − = + which, in the

remainder of the proof, is translated into a contribution of

order 11()aO tn δ− − + for differences of the form

[] [1],bn bnP T s P T s= − = + finally leading to a

contribution of order 1abn δ− +
 for any 0δ > in { }7.7 (,).n bε

Some improvement would seem to be possible, defining the

function g by { } { }() 1 1 ,w s w s tg w = = += − differences that are

of the form [] []bn bnP T s P T s t= − = + can be directly

estimated, at a cost of only a single contribution of the form

1 1() ().n u nθφ ∗+ Then, iterating the cycle, in which one

estimate of a difference in point probabilities is improved to
an estimate of smaller order, a bound of the form

112[] [] ()a
bn bnP T s P T s t O n t n δ− − +−= − = + = + for any

0δ > could perhaps be attained, leading to a final error

estimate in order 11()aO bn n δ− +− + for any 0δ > , to

replace { }7.7 (,).n bε This would be of the ideal order

(/)O b n for large enough ,b but would still be coarser for

small .b

With b and n as in the previous section, we wish to show that

{ }

1
0 0

7,8

1
(([1,]), ([1,])) (1) 1

2

(,),

TV b bd L C b L Z b n E T ET

n b

θ

ε

−− + − −

≤

Where { }
121 1

7.8 (,) ([])n b O n b n b nβ δε − +− −= + for any

0δ > under Conditions 0 1(), ()A D and 12(),B with 12β .

The proof uses sharper estimates. As before, we begin with the
formula

0
0 0

(([1,]), ([1,]))

[]
[] 1

[]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n≥ +

 = −= = − = 
∑

� �

Now we observe that

{ }

[/2]
0

0
0 00 0

0
[/2] 1

2 2
0 0 0

/2

0

10.5(2)2 2
0

[] []
[] 1

[] []

[]([] [])

4 (max []) / []

[/ 2]

3 (/ 2,)
8 , (1.1)

[0,1]

n
bn b

b
r rn n

n

b bn bn
s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

Pθ

ε
θ

≥ =+

= +

−

< ≤

−

 = − == − − = = 

× = = − − = −

≤ + = =

+ >

≤ +

∑ ∑

∑

We have

{ } { }{ }{ }

0[/2]

0
0

[/2]

0
0

[/2]

0 0
0

0 02
0 00

1
010.14 10.8

[]

[]

([]([] []

()(1)
[] [])

1

1
[] []

[]

(,) 2() 1 4 ()

6

bn

n
r

n

b bn bn
s

n

b n
s

b b
r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n

θ

ε θ θ φ

=

= +

= +

≥ ≥

− ∗

=
=

 
× = = − − = − 
 

 − −− = = + 

≤ = = −
=

× + ∨ − +

≤

∑

∑

∑

∑ ∑

{ }

{ }{ }
}

0 10.14

2 2
0 0 10.8

(,)
[0,1]

4 1 4 ()

3
() , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP

θ

θ

ε
θ

θ θ φ

θ

− ∗+ − +

The approximation in (1.2) is further simplified by noting that
[/2] [/2]

0 0
0 0

()(1)
[] []

1

n n

b b
r s

s r
P T r P T s

n

θ
+= =

 − −= = + 
∑ ∑

0
0

()(1)
[]

1b
s

s r
P T s

n

θ
= +

− − − = + 
∑

{ }

[/2]

0 0
0 [/2]

1 2 2
0 0 0

() 1
[] []

1

1 (1 / 2) 2 1 , (1.3)

n

b b
r s n

b b b

s r
P T r P T s

n

n E T T n n ET

θ

θ θ
= >

− −

− −
≤ = =

+

≤ − > ≤ −

∑ ∑

and then by observing that

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

191

{ }

0 0
[/2] 0

1
0 0 0 0

2 2
0

()(1)
[] []

1

1 ([/ 2] (1 / 2))

4 1 (1.4)

b b
r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET

θ

θ

θ

> ≥

−

−

− − = = + 

≤ − > + >

≤ −

∑ ∑

Combining the contributions of (1.2) –(1.3), we thus find tha

{ }

{ } { }{ }
{ }

1
0 0

0 0

7.8

1
010.5(2) 10.14

10.82 2
0

(([1,]), ([1,]))

(1) [] []()(1)

(,)

3
(/ 2,) 2 (,)

[0,1]

24 1 ()
2 4 31 (1.5)

[0,1]

TV

b b
r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET

P

θ

θ

θ

ε

ε ε
θ

θ φ
θ

θ

−

≥ ≥ +

−

∗
−

 − + = = − − 
 

≤

= +

 − + + − + 
  

∑ ∑

� �

The quantity { }7.8 (,)n bε is seen to be of the order claimed

under Conditions 0 1(), ()A D and 12()B , provided that

() ;S ∞ < ∞ this supplementary condition can be removed if

{ }10.8 ()nφ ∗ is replaced by { }10.11 ()nφ ∗ in the definition of

{ }7.8 (,)n bε , has the required order without the restriction on

the ir implied by assuming that () .S ∞ < ∞ Finally, a direct

calculation now shows that

0 0
0 0

0 0

[] []()(1)

1
1

2

b b
r s

b b

P T r P T s s r

E T ET

θ

θ

≥ ≥ +

 = = − − 
 

= − −

∑ ∑

Example 1.0. Consider the point (0,...,0) nO = ∈� . For

an arbitrary vector r , the coordinates of the point x O r= +
are equal to the respective coordinates of the vector

1: (,...)nr x x x= and 1(,...,)nr x x= . The vector r such as

in the example is called the position vector or the radius vector
of the point x . (Or, in greater detail: r is the radius-vector of
x w.r.t an origin O). Points are frequently specified by their
radius-vectors. This presupposes the choice of O as the
“standard origin”. Let us summarize. We have considered

n� and interpreted its elements in two ways: as points and as
vectors. Hence we may say that we leading with the two

copies of :n�
n� = {points}, n� = {vectors}

Operations with vectors: multiplication by a number, addition.
Operations with points and vectors: adding a vector to a point

(giving a point), subtracting two points (giving a vector). n�
treated in this way is called an n-dimensional affine space. (An

“abstract” affine space is a pair of sets , the set of points and
the set of vectors so that the operations as above are defined
axiomatically). Notice that vectors in an affine space are also
known as “free vectors”. Intuitively, they are not fixed at

points and “float freely” in space. From n� considered as an

affine space we can precede in two opposite directions: n� as

an Euclidean space ⇐ n� as an affine space ⇒ n� as a
manifold.Going to the left means introducing some extra
structure which will make the geometry richer. Going to the
right means forgetting about part of the affine structure; going
further in this direction will lead us to the so-called “smooth
(or differentiable) manifolds”. The theory of differential forms
does not require any extra geometry. So our natural direction
is to the right. The Euclidean structure, however, is useful for
examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In n� considered as
an affine space we can already do a good deal of geometry.
For example, we can consider lines and planes, and quadric
surfaces like an ellipsoid. However, we cannot discuss such
things as “lengths”, “angles” or “areas” and “volumes”. To be
able to do so, we have to introduce some more definitions,

making n� a Euclidean space. Namely, we define the length

of a vector 1(,...,)na a a= to be

1 2 2: () ... () (1)na a a= + +

After that we can also define distances between points as
follows:

(,) : (2)d A B AB=
uuur

One can check that the distance so defined possesses natural
properties that we expect: is it always non-negative and equals
zero only for coinciding points; the distance from A to B is the
same as that from B to A (symmetry); also, for three points, A,
B and C, we have (,) (,) (,)d A B d A C d C B≤ + (the

“triangle inequality”). To define angles, we first introduce the
scalar product of two vectors

 1 1(,) : ... (3)n na b a b a b= + +

Thus (,)a a a= . The scalar product is also denote by

dot: . (,)a b a b= , and hence is often referred to as the “dot

product” . Now, for nonzero vectors, we define the angle
between them by the equality

(,)
cos : (4)

a b

a b
α =

The angle itself is defined up to an integral multiple
of 2π . For this definition to be consistent we have to ensure
that the r.h.s. of (4) does not exceed 1 by the absolute value.
This follows from the inequality

2 22(,) (5)a b a b≤

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

192

known as the Cauchy–Bunyakovsky–Schwarz inequality
(various combinations of these three names are applied in
different books). One of the ways of proving (5) is to consider

the scalar square of the linear combination ,a tb+ where

t R∈ . As (,) 0a tb a tb+ + ≥ is a quadratic polynomial in

t which is never negative, its discriminant must be less or
equal zero. Writing this explicitly yields (5). The triangle
inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function () if x x= (the i-th

coordinate). The linear function
idx (the differential of

ix)

applied to an arbitrary vector h is simply
ih .From these

examples follows that we can rewrite df as

1
1

... , (1)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

which is the standard form. Once again: the partial derivatives

in (1) are just the coefficients (depending on x); 1 2, ,...dx dx

are linear functions giving on an arbitrary vector h its

coordinates 1 2, ,...,h h respectively. Hence

1
() 1

()()

... , (2)

hf x

n
n

f
df x h h

x
f

h
x

∂= ∂ = +
∂

∂+
∂

Theorem 1.7. Suppose we have a parametrized curve

()t x ta passing through 0
nx ∈� at 0t t= and with the

velocity vector 0()x t υ= Then

0 0 0

(())
() () ()() (1)

df x t
t f x df x

dt υ υ= ∂ =

Proof. Indeed, consider a small increment of the parameter

0 0:t t t t+ ∆a , Where 0t∆ a . On the other hand, we

have 0 0 0() () ()() ()f x h f x df x h h hβ+ − = + for an

arbitrary vectorh , where () 0hβ → when 0h → .

Combining it together, for the increment of (())f x t we

obtain

0 0

0

0

(() ()

()(. ())

(. ()). ()

()(). ()

f x t t f x

df x t t t

t t t t t t

df x t t t

υ α
β υ α υ α

υ γ

+ ∆ −
= ∆ + ∆ ∆
+ ∆ + ∆ ∆ ∆ + ∆ ∆
= ∆ + ∆ ∆

For a certain ()tγ ∆ such that () 0tγ ∆ → when 0t∆ →

(we used the linearity of 0()df x). By the definition, this

means that the derivative of (())f x t at 0t t= is exactly

0()()df x υ . The statement of the theorem can be expressed

by a simple formula:

1
1

(())
... (2)n

n

df x t f f
x x

dt x x

∂ ∂= + +
∂ ∂

To calculate the value Of df at a point 0x on a given vector

υ one can take an arbitrary curve passing Through 0x at 0t

with υ as the velocity vector at 0t and calculate the usual

derivative of (())f x t at 0t t= .

Theorem 1.8. For functions , :f g U → � , ,nU ⊂ �

() (1)

() . . (2)

d f g df dg

d fg df g f dg

+ = +
= +

Proof. Consider an arbitrary point 0x and an arbitrary vector

υ stretching from it. Let a curve ()x t be such that

0 0()x t x= and 0()x t υ= .

Hence 0()()() ((()) (()))
d

d f g x f x t g x t
dt

υ+ = +

at 0t t= and

0()()() ((()) (()))
d

d fg x f x t g x t
dt

υ =

at 0t t= Formulae (1) and (2) then immediately follow from

the corresponding formulae for the usual derivative Now,
almost without change the theory generalizes to functions

taking values in m� instead of � . The only difference is

that now the differential of a map : mF U → � at a point x

will be a linear function taking vectors in n� to vectors in
m� (instead of �) . For an arbitrary vector | ,nh∈ �

() () ()()F x h F x dF x h+ = +

+ () (3)h hβ

Where () 0hβ → when 0h → . We have
1(,...,)mdF dF dF= and

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

193

1
1

1 1

11

1

...

....

... (4)

...

n
n

n

nm m

n

F F
dF dx dx

x x

F F
dxx x

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  =   
  ∂ ∂    ∂ ∂ 

In this matrix notation we have to write vectors as vector-
columns.

Theorem 1.9. For an arbitrary parametrized curve ()x t in

n� , the differential of a map : mF U → � (where
nU ⊂ �) maps the velocity vector ()x t to the velocity

vector of the curve (())F x t in :m�
.(())

(())(()) (1)
dF x t

dF x t x t
dt

=

Proof. By the definition of the velocity vector,

.

() () (). () (2)x t t x t x t t t tα+ ∆ = + ∆ + ∆ ∆

Where () 0tα ∆ → when 0t∆ → . By the definition of the

differential,

() () ()() () (3)F x h F x dF x h h hβ+ = + +

Where () 0hβ → when 0h → . we obtain
.

.

. .

.

(()) ((). ())

() ()(() ())

(() ()). () ()

() ()(() ()

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t

α

α

β α α

γ

+ ∆ = + ∆ + ∆ ∆

= + ∆ + ∆ ∆ +

∆ + ∆ ∆ ∆ + ∆ ∆

= + ∆ + ∆ ∆

144424443

For some () 0tγ ∆ → when 0t∆ → . This precisely means

that
.

() ()dF x x t is the velocity vector of ()F x . As every

vector attached to a point can be viewed as the velocity vector
of some curve passing through this point, this theorem gives a
clear geometric picture of dF as a linear map on vectors.

Theorem 1.10 Suppose we have two maps :F U V→ and

: ,G V W→ where , ,n m pU V W⊂ ⊂ ⊂� � � (open

domains). Let : ()F x y F x=a . Then the differential of

the composite map :GoF U W→ is the composition of the

differentials of F and :G

()() () () (4)d GoF x dG y odF x=

Proof. We can use the description of the differential

.Consider a curve ()x t in n� with the velocity vector
.

x .

Basically, we need to know to which vector in p� it is taken
by ()d GoF . the curve ()(() ((())GoF x t G F x t= . By the

same theorem, it equals the image under dG of the Anycast

Flow vector to the curve (())F x t in m� . Applying the

theorem once again, we see that the velocity vector to the

curve (())F x t is the image under dF of the vector
.

()x t .

Hence
. .

()() (())d GoF x dG dF x= for an arbitrary vector
.

x .

Corollary 1.0. If we denote coordinates in n� by
1(,...,)nx x and in m� by 1(,...,)my y , and write

1
1

1
1

... (1)

... , (2)

n
n

n
n

F F
dF dx dx

x x
G G

dG dy dy
y y

∂ ∂= + +
∂ ∂
∂ ∂= + +
∂ ∂

Then the chain rule can be expressed as follows:

1
1

() ... , (3)m
m

G G
d GoF dF dF

y y

∂ ∂= + +
∂ ∂

Where
idF are taken from (1). In other words, to get

()d GoF we have to substitute into (2) the expression for
i idy dF= from (3). This can also be expressed by the

following matrix formula:

1 1 1 1

11 1

1 1

....

() (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF

dxG G F F

y y x x

 ∂ ∂  ∂ ∂
   ∂ ∂ ∂ ∂    =      ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂  

i.e., if dG and dF are expressed by matrices of partial

derivatives, then ()d GoF is expressed by the product of

these matrices. This is often written as

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

194

1 11 1

11

1 1

1 1

1

1

........

...

... ...

....

... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z

x x y y

y y

x x

y y

x x

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
 = 
  ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂   

 ∂ ∂
 ∂ ∂ 
 
 ∂ ∂  ∂ ∂ 

Or

1

, (6)
im

a i a
i

z z y

x y x

µ µ

=

∂ ∂ ∂=
∂ ∂ ∂∑

Where it is assumed that the dependence of my∈� on
nx∈� is given by the map F , the dependence of pz∈ �

on my∈� is given by the map ,G and the dependence of
pz∈ � on

nx∈� is given by the composition GoF .

Definition 1.6. Consider an open domain
nU ⊂ � . Consider

also another copy of n� , denoted for distinction n
y� , with

the standard coordinates 1(...)ny y . A system of coordinates

in the open domain U is given by a map : ,F V U→

where n
yV ⊂ � is an open domain of n

y� , such that the

following three conditions are satisfied :

(1) F is smooth;

(2) F is invertible;

(3) 1 :F U V− → is also smooth

The coordinates of a point x U∈ in this system are the

standard coordinates of 1() n
yF x− ∈�

In other words,
1 1: (...,) (...,) (1)n nF y y x x y y=a

Here the variables 1(...,)ny y are the “new” coordinates of

the point x

Example 1.2. Consider a curve in 2� specified in polar
coordinates as

() : (), () (1)x t r r t tϕ ϕ= =

We can simply use the chain rule. The map ()t x ta can be

considered as the composition of the maps

((), ()), (,) (,)t r t t r x rϕ ϕ ϕa a . Then, by the chain

rule, we have
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r

ϕ ϕ
ϕ ϕ

∂ ∂ ∂ ∂= = + = +
∂ ∂ ∂ ∂

Here
.

r and
.

ϕ are scalar coefficients depending on t ,

whence the partial derivatives ,x x
r ϕ

∂ ∂
∂ ∂ are vectors

depending on point in 2� . We can compare this with the

formula in the “standard” coordinates:
. . .

1 2x e x e y= + .

Consider the vectors ,x x
r ϕ

∂ ∂
∂ ∂ . Explicitly we have

(cos ,sin) (3)

(sin , cos) (4)

x

r
x

r r

ϕ ϕ

ϕ ϕ
ϕ

∂ =
∂
∂ = −
∂

From where it follows that these vectors make a basis at all
points except for the origin (where 0r =). It is instructive to
sketch a picture, drawing vectors corresponding to a point as

starting from that point. Notice that ,x x
r ϕ

∂ ∂
∂ ∂ are,

respectively, the velocity vectors for the curves (,)r x r ϕa

0()fixedϕ ϕ= and 0(,) ()x r r r fixedϕ ϕ =a . We can

conclude that for an arbitrary curve given in polar coordinates

the velocity vector will have components
. .

(,)r ϕ if as a basis

we take : , : :r
x xe er ϕ ϕ

∂ ∂= =∂ ∂

. . .

(5)rx e r eϕ ϕ= +

A characteristic feature of the basis ,re eϕ is that it is not

“constant” but depends on point. Vectors “stuck to points”
when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same
appearance in all coordinate systems.
Proof. Follows directly from the chain rule and the

transformation law for the basis ie .In particular, the elements

of the basis ii
xe

x
∂= ∂ (originally, a formal notation) can be

understood directly as the velocity vectors of the coordinate

lines 1(,...,)i nx x x xa (all coordinates but
ix are fixed).

Since we now know how to handle velocities in arbitrary
coordinates, the best way to treat the differential of a map

: n mF →� � is by its action on the velocity vectors. By
definition, we set

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

195

0 0 0

() (())
() : () () (1)

dx t dF x t
dF x t t

dt dt
a

Now 0()dF x is a linear map that takes vectors attached to a

point 0
nx ∈� to vectors attached to the point () mF x ∈�

1
1

1 1

11

1

1

...

...

(,...,) , (2)

...

n
n

n

m
nm m

n

F F
dF dx dx

x x

F F
dxx x

e e

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  
  
  ∂ ∂    ∂ ∂ 

In particular, for the differential of a function we always have

1
1

... , (3)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂

Where
ix are arbitrary coordinates. The form of the

differential does not change when we perform a change of
coordinates.

Example 1.3 Consider a 1-form in 2� given in the
standard coordinates:

A ydx xdy= − + In the polar coordinates we will have

cos , sinx r y rϕ ϕ= = , hence

cos sin

sin cos

dx dr r d

dy dr r d

ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= +

Substituting into A, we get

2 2 2 2

sin (cos sin)

cos (sin cos)

(sin cos)

A r dr r d

r dr r d

r d r d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − −
+ +
= + =

Hence 2A r dϕ= is the formula for A in the polar

coordinates. In particular, we see that this is again a 1-form, a
linear combination of the differentials of coordinates with
functions as coefficients. Secondly, in a more conceptual way,
we can define a 1-form in a domain U as a linear function on
vectors at every point of U :

1
1() ... , (1)n

nω υ ω υ ω υ= + +

If i
ieυ υ=∑ , where ii

xe
x

∂= ∂ . Recall that the

differentials of functions were defined as linear functions on
vectors (at every point), and

() (2)i i i
j jj

x
dx e dx

x
δ∂ = = ∂ 

 at every point

x .

Theorem 1.9. For arbitrary 1-form ω and path γ , the

integral
γ

ω∫ does not change if we change parametrization of

γ provide the orientation remains the same.

Proof: Consider
'

(()),
dx

x t
dt

ω and '
'

((())),
dx

x t t
dt

ω

As

'
'

((())),
dx

x t t
dt

ω = '
' '

((())), . ,
dx dt

x t t
dt dt

ω

Let p be a rational prime and let ().pK ζ= � We write ζ

for pζ or this section. Recall that K has degree

() 1p pϕ = − over .� We wish to show that [].KO ζ= �

Note that ζ is a root of 1,px − and thus is an algebraic

integer; since KΟ is a ring we have that [] .KOζ ⊆� We

give a proof without assuming unique factorization of ideals.
We begin with some norm and trace computations. Let j be

an integer. If j is not divisible by ,p then jζ is a primitive
thp root of unity, and thus its conjugates are

2 1, ,..., .pζ ζ ζ − Therefore

2 1

/ () ... () 1 1j p
K pTr ζ ζ ζ ζ ζ−= + + + = Φ − = −�

If p does divide ,j then 1,jζ = so it has only the one

conjugate 1, and / () 1j
KTr pζ = −� By linearity of the

trace, we find that
2

/ /

1
/

(1) (1) ...

(1)

K K

p
K

Tr Tr

Tr p

ζ ζ

ζ −

− = − =

= − =
� �

�

We also need to compute the norm of 1 ζ− . For this, we use

the factorization

1 2

2 1

... 1 ()

()()...();

p p
p

p

x x x

x x xζ ζ ζ

− −

−

+ + + = Φ

= − − −

Plugging in 1x = shows that

 2 1(1)(1)...(1)pp ζ ζ ζ −= − − −

Since the (1)jζ− are the conjugates of (1),ζ− this shows

that / (1)KN pζ− =� The key result for determining the

ring of integers KO is the following.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

196

LEMMA 1.9

 (1) KO pζ− ∩ =� �

Proof. We saw above that p is a multiple of (1)ζ− in

,KO so the inclusion (1) KO pζ− ∩ ⊇� �

is immediate.

Suppose now that the inclusion is strict. Since

(1) KOζ− ∩� is an ideal of � containing p� and p� is

a maximal ideal of � , we must have (1) KOζ− ∩ =� �

Thus we can write 1 (1)α ζ= −

For some .KOα ∈ That is, 1 ζ− is a unit in .KO

COROLLARY 1.1 For any ,KOα ∈

/ ((1)) .KTr pζ α− ∈� �

PROOF. We have

/ 1 1

1 1 1 1

1
1 1

((1)) ((1)) ... ((1))

(1) () ... (1) ()

(1) () ... (1) ()

K p

p p

p
p

Tr ζ α σ ζ α σ ζ α
σ ζ σ α σ ζ σ α

ζ σ α ζ σ α

−

− −

−
−

− = − + + −

= − + + −

= − + + −

�

Where the iσ are the complex embeddings of K (which we

are really viewing as automorphisms of K) with the usual

ordering. Furthermore, 1 jζ− is a multiple of 1 ζ− in KO

for every 0.j ≠ Thus

/ ((1)) (1)K KTr Oα ζ ζ− ∈ −�
Since the trace is also a

rational integer.

PROPOSITION 1.4 Let p be a prime number and let

| ()pK ζ= � be the thp cyclotomic field. Then

[] [] / (());K p pO x xζ= ≅ Φ� � Thus 21, ,..., p
p pζ ζ − is an

integral basis for KO .

PROOF. Let KOα ∈ and write
2

0 1 2... p
pa a aα ζ ζ −

−= + + + With .ia ∈� Then

2
0 1

2 1
2

(1) (1) () ...

()p p
p

a a

a

α ζ ζ ζ ζ
ζ ζ− −

−

− = − + − +

+ −

By the linearity of the trace and our above calculations we find

that / 0((1))KTr paα ζ− =� We also have

/ ((1)) ,KTr pα ζ− ∈� � so 0a ∈� Next consider the

algebraic integer
1 3

0 1 2 2() ... ;p
pa a a aα ζ ζ ζ− −

−− = + + + This is an

algebraic integer since 1 1pζ ζ− −= is. The same argument as

above shows that 1 ,a ∈� and continuing in this way we find

that all of the ia are in � . This completes the proof.

Example 1.4 Let K = � , then the local ring ()p� is simply

the subring of � of rational numbers with denominator

relatively prime to p . Note that this ring ()p� is not the ring

p� of p -adic integers; to get p� one must complete ()p� .

The usefulness of ,K pO comes from the fact that it has a

particularly simple ideal structure. Let abe any proper ideal

of ,K pO and consider the ideal Ka O∩ of .KO We claim

that ,() ;K K pa a O O= ∩ That is, that a is generated by the

elements of a in .Ka O∩ It is clear from the definition of an

ideal that ,() .K K pa a O O⊇ ∩ To prove the other inclusion,

let α be any element of a . Then we can write /α β γ=

where KOβ ∈ and .pγ ∉ In particular, aβ ∈ (since

/ aβ γ ∈ and a is an ideal), so KOβ ∈ and .pγ ∉ so

.Ka Oβ ∈ ∩ Since ,1/ ,K pOγ ∈ this implies that

,/ () ,K K pa O Oα β γ= ∈ ∩ as claimed.We can use this

fact to determine all of the ideals of , .K pO Let a be any ideal

of ,K pO and consider the ideal factorization of Ka O∩ in

.KO write it as n
Ka O p b∩ = For some n and some ideal

,b relatively prime to .p we claim first that , , .K p K pbO O=

We now find that

 , , ,() n n
K K p K p K pa a O O p bO p O= ∩ = = Since , .K pbO

Thus every ideal of ,K pO has the form ,
n

K pp O for some ;n

it follows immediately that ,K pO is noetherian. It is also now

clear that ,
n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pOa Since

, ,K p KpO O p∩ = this map is also surjection, since the

residue class of ,/ K pOα β ∈ (with KOα ∈ and pβ ∉) is

the image of 1αβ − in / ,K pO which makes sense since β is

invertible in / .K pO Thus the map is an isomorphism. In

particular, it is now abundantly clear that every non-zero

prime ideal of ,K pO is maximal. To show that ,K pO is a

Dedekind domain, it remains to show that it is integrally
closed in K . So let Kγ ∈ be a root of a polynomial with

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

197

coefficients in , ;K pO write this polynomial as

11 0

1 0

...m mm

m

x x
α α
β β

−−

−

+ + + With i KOα ∈ and .i K pOβ −∈

Set 0 1 1... .mβ β β β −= Multiplying by mβ we find that βγ

is the root of a monic polynomial with coefficients in .KO

Thus ;KOβγ ∈ since ,pβ ∉ we have ,/ K pOβγ β γ= ∈
. Thus ,K pO is integrally close in .K

COROLLARY 1.2. Let K be a number field of degree n

and let α be in KO then '
/ /() ()K K KN O Nα α=� �

PROOF. We assume a bit more Galois theory than usual for
this proof. Assume first that /K � is Galois. Let σ be an

element of (/).Gal K � It is clear that

/() / () ;K KO O ασ σ α ≅ since () ,K KO Oσ = this shows

that ' '
/ /(()) ()K K K KN O N Oσ α α=� � . Taking the product

over all (/),Gal Kσ ∈ � we have
' '

/ / /(()) ()n
K K K K KN N O N Oα α=� � � Since / ()KN α� is

a rational integer and KO is a free� -module of rank ,n

// ()K K KO N Oα� Will have order / () ;n
KN α� therefore

 '
/ / /(()) ()n

K K K K KN N O N Oα α=� � �

This completes the proof. In the general case, let L be the
Galois closure of K and set [:] .L K m=

F. Concurrent Crawling Algorithm

The concurrent crawling approach

Global State-flow Graph. The first change is the separation
of the state-flow graph from the state machine. The graph is
defined in a global scope, so that it can be centralized and used
by all concurrent nodes. Upon the start of the crawling
process, an initial crawling node is created and its RUN
procedure is called.

Browser Pool. The robot and state machine are created for
each crawling node. Thus, they are placed in the local scope of
the RUN procedure. Generally, each node needs to acquire a
browser instance, and after the process is finished, the browser
is killed. Creating new browser instances is a process intensive
and time-consuming operation. To optimize, a new structure is
introduced: the BrowserPool, which creates and maintains
browsers in a pool of browsers to be reused by the crawling
nodes. This reduces start-up and shut-down costs. The
BrowserPool can be queried for a browser instance, and when
a node is finished working, the browser used is released back

to the pool. In addition, the algorithm now takes the desired
number of browsers as input. Increasing the number of
browsers used can decrease the crawling runtime, but it also
comes with some limitations and tradeoffs.

Forward-Tracking. In the sequential algorithm, after
finishing a crawl path, we need to bring the crawler to the
previous (relevant) state. In the concurrent algorithm,
however, we create a new crawling node for each path to be
examined. Thus, instead of bringing the crawler back to the
desired state (backtracking), we must take the new node
forward to the desired state, hence, forward-tracking. This is
done after the browser is pointed to the URL. The first time
the RUN procedure is executed, no forward-tracking is taking
place, since the event-path (i.e., the list of clickable items
resulting to the desired state) is empty, so the initial crawler
starts from the Index state. However, if the event path is not
empty, the clickables are used to take the browser forward to
the desired state. At that point, the CRAWL procedure is
called.

Crawling Procedure. The first part of the CRAWL procedure
is unchanged. To enable concurrent nodes accessing the
candidate clickables in a thread-safe manner, the body of the
for loop is synchronized around the candidate element to be
examined. To avoid examining a candidate element multiple
times bymultiple nodes, each node first checks the examined
state of the candidate element. If the element has not been
examined previously, the robot executes an event on the
element in the browser and sets its state as examined. If the
state is changed, before going into the recursive CRAWL call,
the PARTITION procedure is called.

Partition Procedure. The partition procedure, called on a
particular state cs, creates a new crawling node for every
unexamined candidate clickable in cs. The new crawlers are
initialized with two parameters, namely, (1) the current state
cs, and (2) the execution path from the initial Index state to
this state. Every new node is distributed to the work queue
participating in the concurrent crawling. When a crawling
node is chosen from the work queue, its corresponding RUN
procedure is called in order to spawn a new crawling thread.

G. Applying Crawljax

The results of applying CRAWLJAX to C1–C6 are displayed.
The key characteristics of the sites under study, such as the
average DOM size and the total number of candidate
clickables. Furthermore, it lists the key configuration
parameters set, most notably the tags used to identify
candidate clickables and the maximum crawling depth.

H. Accuracy

Experimental Setup. Assessing the correctness of the
crawling process is challenging for two reasons. First, there is
no strict notion of “correctness” with respect to state

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

198

equivalence. The state comparison operator part of our
algorithm can be implemented in different ways: the more
states it considers equal, the smaller and the more abstract the
resulting state-flow graph is. The desirable level of abstraction
depends on the intended use of the crawler (regression testing,
program comprehension, security testing, to name a few) and
the characteristics of the system being crawled. Second, no
other crawlers for AJAX are available, making it impossible to
compare our results to a “gold standard.” Consequently, an
assessment in terms of precision (percentage of correct states)
and recall (percentage of states recovered) is impossible to
give. To address these concerns, we proceed as follows. For
the cases in which we have full control—C1 and C2—we
inject specific clickable elements.
—For C1, 16 elements were injected, out of which 10 were on
the top-level index page. Furthermore, to evaluate the state
comparison procedure, we intentionally introduced a number
of identical (clone) states.
—For C2, we focused on two product categories, CATS and
DOGS, from the five available categories. We annotated 36
elements (product items) by modifying the JAVASCRIPT
method, which turns the items retrieved from the server into
clickables on the interface.
Subsequently, we manually create a referencemodel, to which
we compare the derived state-flow graph. To assess the four
external sites C3–C6, we inspect a selection of the states. For
each site, we randomly select ten clickables in advance, by
noting their tag names, attributes, and XPath expressions.
After crawling of each site, we check the presence of these ten
elements among the list of detected clickables. In order to do
the manual inspection of the results, we run CRAWLJAX with
the Mirror plugin enabled. This post-crawling plugin creates a
static mirror, based on the derived state-flow graph, by writing
all DOM states to file and replacing edges with appropriate
hyperlinks.

I. Scalability

Experimental Setup. In order to obtain an understanding of
the scalability of our approach, we measure the time needed to
crawl, as well as a number of site characteristics that will
affect the time needed. We expect the crawling performance to
be directly proportional to the input size, which is composed
of (1) the average DOM string size, (2) number of candidate
elements, and (3) number of detected clickables and states,
which are the characteristics that we measure for the six cases.
To test the capability of our method in crawling real sites and
coping with unknown environments, we run CRAWLJAX on
four external cases, C3–C6. We run CRAWLJAX with depth
level 2 on C3 and C5, each having a huge state space to
examine the scalability of our approach in analyzing tens of
thousands of candidate clickables and finding clickables.

J. Findings.

Concerning the time needed to crawl the internal sites, we see
that it takes CRAWLJAX 14 and 26 seconds to crawl C1 and

C2, respectively. The average DOM size in C2 is five times
bigger, and the number of candidate elements is three times
higher. In addition to this increase in DOM size and in the
number of candidate elements, the C2 site does not support the
browser’s built-in Back method. Thus, as discussed in Section
3.6, for every state change on the browser, CRAWLJAX has
to reload the application and click through to the previous
state to go further. This reloading and clicking through
naturally has a negative effect on the performance. Note that
the performance is also dependent on the CPU and memory of
the machine CRAWLJAX is running on, as well as the speed
of the server and network properties of the case site. C6, for
instance, is slow in reloading and retrieving updates from its
server, which increases the performance measurement
numbers in our experiment. CRAWLJAX was able to run
smoothly on the external sites. Except a few minor
adjustments, we did not witness any difficulties. C3 with depth
level 2 was crawled successfully in 83 minutes, resulting in
19,247 examined candidate elements, 1,101 detected
clickables, and 1,071 detected states. For C5, CRAWLJAX
was able to finish the crawl process in 107 minutes on 32,365
candidate elements, resulting in 1,554 detected clickables, and
1,234 states. As expected, in both cases, increasing the depth
level from 1 to 2 greatly expands the state space.

K. Concurrent Crawling

In our final experiment, the main goal is to assess the
influence of the concurrent crawling algorithm on the crawling
runtime.

Experimental Object. Our experimental object for this study
is Google ADSENSE11, an AJAX application developed by
Google, which empowers online publishers to earn revenue by
displaying relevant ads on their Web content. The ADSENSE
interface is built using GWT (Google Web Toolkit)
components and is written in Java. The index page of
ADSENSE. On the top, there are four main tabs (Home, My
ads, Allow & block ads, Performance reports). On the top left
side, there is a box holding the anchors for the current selected
tab. Underneath the left-menu box, there is a box holding links
to help-related pages. On the right of the left-menu we can see
the main contents,which are loaded by AJAX calls.

L. Applications of Crawljax

As mentioned in the introduction, we believe that the crawling
and generating capabilities of our approach have many
applications for modern Web applications. We believe that the
crawling techniques that are part of our solution can serve as a
starting point and be adopted by general search engines to
expose the hidden-web content induced by JAVASCRIPT, in
general, and AJAX, in particular. In their proposal for making
AJAX applications crawlable,15 Google proposes using URLs
containing a special hash fragment, that is, #!, for identifying
dynamic content. Google then uses this hash fragment to send
a request to the server. The server has to treat this request in a

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

199

special way and send an HTML snapshot of the dynamic
content, which is then processed by Google’s crawler. In the
same proposal, they suggest using CRAWLJAX for creating a
static snapshot for this purpose. Web developers can use the
model inferred by CRAWLJAX to automatically generate a
static HTML snapshot of their dynamic content, which then
can be served to Google for indexing. The ability to
automatically detect and exercise the executable elements of
an AJAX site and navigate between the various dynamic states
gives us a powerful Web-analysis and test-automation
mechanism. In the recent past, we have applied CRAWLJAX
in the following Web-testing domains.
(1) Invariant-based testing of AJAX user interfaces [Mesbah
and van Deursen 2009],
(2) Spotting security violations in Web widget interactions
[Bezemer et al. 2009] (3) Regression testing of dynamic and
nondeterministic Web interfaces [Roest et al. 2010],
(4) Automated cross-browser compatibility testing [Mesbah
and Prasad 2011].

M. HTTP Request Origin Identification

The main challenge of detecting the origin widget of a request
is to couple the request to the DOM element from which it
originated. This is not a trivial task, since HTTP requests do
not carry information about the element that triggered the
request. To be able to analyze HTTP requests, all requests
must be intercepted. For this purpose, we pro- pose to place an
HTTP proxy between the client browser and the server, which
bu_ers all outgoing HTTP requests. The only way to attach
information about DOM elements to an HTTP request,
without a_ecting the behavior of the web server handling the
request, is by adding data to the re- quest query string (e.g.,
?wid=w23&requestForProxyId=123). This data should be
selected carefully, to ensure it does not interfere with other
parameters being sent to the server. If the request parameters
contain the value of a unique at- tribute, such as the element's
ID, it can be extracted and used to identify the element in the
DOM. Enforcing all HTTP requests to contain a value with
which the origin widget can be detected requires having
mechanisms for the enforcement of a unique attribute in each
DOM element, and the attachment of the unique attribute of
the originat- ing element to outgoing requests. First we need to
consider ways HTTP requests can be triggered in Ajax-based
web applications. Static Elements. HTTP requests triggered by
the src attribute of an static element, for instance in a SCRIPT
or IMG element in the source code of the HTML page, are
sent immediately when the browser parses them. This leaves
us no time to dynamically annotate a unique value on these
elements, as the requests are sent before we can access the
DOM. The solution we propose is to use the proxy for inter-
cepting responses as well. The responses can be adjusted by
the proxy to ensure that each element with a src attribute is
given a unique identifying attribute. Note that the attribute is
annotated twice: in the URL so that it reaches the proxy, and

as an attribute for easy identication on the DOM tree using
XPath when the violation validation process is carried out.

Dynamic Elements. The src attribute of an element that is
dynamically created on the client through JavaScript and
added to the DOM tree, can also trigger an HTTP request.
Annotating attributes through the proxy has limitations for this
type of request, since elements that are added dynamically on
the client-side are missed. During dynamic annotation these
elements are missed as well, because the request is triggered
before the element can be annotated. Because we assume
every element has a unique attribute in our approach, requests
triggered from dynamically generated elements can be
detected easily as they do not contain a unique attribute. We
believe dynamically generated elements with a src attribute
are rare in modern web applications, and since this attribute
should point to, for instance, a JavaScript or image, the HTTP
request they trigger should be easy to verify manually by a
tester. Therefore, all requests made from elements which are
not annotated, should be aged as suspicious and inspected by
the tester.

Ajax Calls. HTTP requests sent through an Ajax call, via the
XMLHttpRequest object, are the most essential form of
sending HTTP requests in modern single-page web appli-
cations [2]. These requests are often triggered by an event,
e.g., click, mouseover, on an element with the corresponding
event listener. Note that this type of elements could also be
created dynamically, and therefore proxy annotation is not
desirable. Hence, we propose to dynamically annotate such
elements. To that end, we annotate a unique attribute on the
element right before an event is red. Note that this annotation
is easiest to implement by means of aspects, as explained in
Section 6. After the annotation, the attribute (and its value)
must be appended to all HTTP requests that the event triggers.
To that end, we take advantage of a technique known as
Prototype Hijacking[17], in which the Ajax call responsible
for client/server communication can be subverted using a
wrapper function around the XMLHttpRequest object. Dur-
ing the subversion, we can use the annotated attribute of the
element, on which the event initiating the call was _red, to add
a parameter to the query string of the Ajax HTTP call. It is
possible that the annotated origin element is removed from the
DOM by the time the request is validated. To avoid this
problem, we keep track of the DOM history. After an event is
red, and a DOM change is occurred, the state is saved in the
history list. Assuming the history size is large enough, a
request can always be coupled to its origin element, and the
state from which it was triggered, bysearching the DOM
history.

N. Trusted Requests

After detecting the origin widget of a request, the request must
be validated to verify whether the widget was allowed to send
this request. To this end, a method must be denied for

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

200

specifying which requests a widget is allowed to make. Our
approach uses an idea often applied in Firewall technology, in
which each application has an allowed list of URLs[10]. For
each widget, we can automatically create a list of allowed
URLs by crawling it in an isolated environment. This way,
every request intercepted by the proxy can be assigned to that
specific widget. At the end of the crawling process, the proxy
buyer contains all the requests the widget has triggered. This
list can be saved, edited by the tester, and retrieved during the
validation phase of a request. In addition, it is possible for a
tester to manually ag URLs in the list as suspicious. If during
the validation process a request URL does not exist in the
allowed URL list of its origin widget, or if the URL is aged as
suspicious, we assume the widget does not have permission to
trigger the request and thus an HTTP request violation has
occurred. Assuming a request contains the annotated attribute
of the origin element, Algorithm can be used to automatically
detect the origin widget of the request and report HTTP
request violations. Note that this approach also works for
requests that do not originate from a widget, but from a non-
widget element instead. By crawling the framework with only
an empty widget, an allowed URL list can be created for the
frame- work. A request which originates from an element that
does not have a widget boundary will be validated against the
allowed URL list of the overall framework.

O. Framework and Language Contributions

FORWARD facilitates the development of Ajax pages by
treating them as rendered views. The pages consist of a page
data tree, which captures the data of the page state at a logical
level, and a visual layer, where a page unit tree maps to the
page data tree and renders its data into an html page, typically
including JavaScript and Ajax components also. The page data
tree is populated with data from an SQL statement, called the
page query. SQL has been minimally extended with (a)
SELECT clause nesting and (b) variability of schemas in
SQL's CASE statements so that it creates nested
heterogeneous tables that the programmer easily maps to the
page unit tree. A user request from the context of a unit leads
to the invocation of a server-side program, which updates the
server state. In this paper, which is focused on the report part
of data-driven pages and applications, we assume that the
server state is captured by the state of an SQL database and
therefore the server state update is fully captured by respective
updates of the tables of the database, which are expressed in
SQL. Conceptually, the updates indirectly lead to a new page
data tree, which is the result of the page query on the new
server state, and consequently to a new rendered page.
FORWARD makes the following contributions towards rapid,
declarative programming of Ajax pages:

A minimal SQL extension that is used to create the page data
tree, and a page unit tree that renders the page data tree. The
combination enables the developer to avoid multiple language
programming (JavaScript, SQL, Java) in order to implement

Ajax pages. Instead the developer declaratively describes the
reported data and their rendering into Ajax pages.

We chose SQL over XQuery/XML because (a) SQL has a
much larger programmer audience and installed base (b) SQL
has a smaller feature set, omitting operators such as // and *
that have created challenges for efficient query processing and
view maintenance and do not appear to be necessary for our
problem, and (c) existing database research and technology
provide a great leverage for implementation and optimization,
which enables focus on the truly novel research issues without
having to re-express already solved problems in XML/X-
Query or having to re-implement database server
functionality. Our experience in creating commercial level
applications and prior academic work in the area indicate that
if the application does not interface with external systems then
SQL's expressive power is typically sufficient.

A FORWARD developer avoids the hassle of programming
JavaScript and Ajax components for partial updates. Instead
he specifies the unit state using the page data tree, which is a
declarative function expressed in the SQL ex- tension over the
state of the database. For example, a map unit (which is a
wrapper around a Google Maps component) is used by
specifying the points that should be shown on the map,
without bothering to specify which points are new, which ones
are updated, what methods the component covers for
modifications, etc. Roadmap we present the framework in
with a running example. A naive implementation of the
FORWARD's simple programming model would exhibit the
crippling performance and interface quality problems of pure
server-side applications. Instead FORWARD achieves the
performance and interface quality of Ajax pages by solving
performance optimization problems that would otherwise need
to be hand- coded by the developer. In particular:

Instead of literally creating the new page data tree, unit tree
and html/JavaScript page from scratch in each step,
FORWARD incrementally computes them using their prior
versions. Since the page data tree is typically fueled by our
extended SQL queries, FORWARD leverages prior database
research on incremental view maintenance, essentially treating
the page data tree as a view. We extend prior work on
incremental view maintenance to capture (a) nesting, (b)
variability of the output tuples and (c) ordering, which has
been neglected by prior work focusing on homogeneous sets
of tuples.

FORWARD provides an architecture that enables the use of
massive JavaScript/Ajax component libraries (such as Dojo
[30]) as page units into FORWARD's framework. The basic
data tree incremental maintenance algorithm is modified to
account for the fact that a component may not over methods to
implement each possible data tree change. Rather a best-effort
approach is enabled for wrap- ping data tree changes into
component method calls. The net effect is that FORWARD's

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

201

ease-of-development is accomplished at an acceptable
performance penalty over hand-crafted programs. As a data
point, revising an existing review and re-rendering the page
takes 42 ms in FORWARD, which compares favorably to
WAN network latency (50-100 ms and above), and the
average human reaction time of 200 ms.

IV. CHARACTERIZING COMPLEXITY

Our analysis of our measurement dataset is two-pronged. First,
in this section, we analyze web pages with respect to various
complexity metrics. Next, we analyze the impact of these
metrics on performance. Note that our focus is on capturing
the complexity of web pages as visible to browsers on client
devices; we do not intend to capture the complexity of server-
side infrastructure of websites [43]. We consider two high-
level notions of web page complexity. Content complexity
metrics capture the number and size of objects fetched to load
the web page and also the different MIME types (e.g., image,
javascript, CSS, text) across which these objects are spread.
Now, loading www.foo.com may require fetching content not
only from other internal servers such as images.foo.com and
news.foo.com, but also involve third-party services such as
CDNs (e.g., Akamai), analytics providers (e.g., Google
analytics), and social network plugins (e.g., Facebook).
Service complexity metrics capture the number and
contributions of the various servers and administrative origins
involved in loading a web page. We begin with the content-
level metrics before moving on to service-level metrics. In
each case, we present a breakdown of the metrics across
different popularity rank ranges (e.g., top 1–1000 vs. 10000–
20000) and across different categories of websites (e.g.,
Shopping vs. News). Here, we only show results for one of the
vantage points as the results are (expectedly) similar across
vantage points.

A. Content Complexity

Number of objects: We begin by looking, at the total number
of object requests required, i.e., number of HTTP GETs
issued, to load a web page. Across all the rank ranges, loading
the base web page requires more than 40 objects to be fetched
in the median case. We also see that a non-trivial fraction
(20%) of websites request more than 100–125 objects on their
landing web page, across the rank ranges. While the top 1–
400 sites load more objects, the distributions for the different
rank ranges are qualitatively and quantitatively similar; even
the lower rank websites have a large number of requests. Next,
we divide the sites by their categories. For clarity, we only
focus on the top-two-level categories. To ensure that our
results are statistically meaningful, Median number of requests
for objects of different MIME-types across different rank
ranges. The categories that have at least 50 websites in our
dataset. The breakdown across the categories shows a
pronounced difference between categories; the median number

of objects requested on News sites is nearly 3× the median for
Business sites. We suspect that this is an artifact of News sites
tending to cram in more content on their landing pages
compared to other sites to give readers quick snippets of
information across different news topics. Types of objects:
Having considered the total number of object requests, we
next consider their breakdown by content MIME types. For
brevity, only the median number of requests for the four most
popular content types across websites of different rank ranges.
The first order observation again is that the different rank
ranges are qualitatively similar in their distribution, with
higher ranked websites having only slightly more objects of
each type. However, we find several interesting patterns in the
prevalence of different types of content. While it should not
come as a surprise that many websites use these different
content types, the magnitude of these fractions is surprising.
For example, we see that, across all rank ranges, more than
50% of sites fetch at least 6 Javascript ob- jects. Similarly,
more than 50% of the sites have at least 2 CSS objects. The
median value for Flash is small; many websites keep their
landing pages simple and avoid rich Flash content. These
results are roughly consistent with recent independent
measurements [31]. The corresponding breakdown for the
number of objects requested of various content types across
different categories of websites. Again, we see the News
category being dominant across different content types. News
sites load a larger number of objects overall compared to other
site categories. Hence, a natural follow-up question is whether
News sites issue requests for a proportionately higher number
of objects across all content types. Therefore, for each
website, we normalize the number of objects of each content
type by the total number of objects for that site. The
distribution of the median values of the normalized fraction of
objects of various content types (not shown) presents a slightly
different picture than that seen with absolute counts. Most
categories have a very similar normalized contribution from
all content types in terms of the median value. The only
significant difference we observe is in the case of Flash
objects. Kids and Teens sites have a significantly greater
fraction of Flash objects than sites in other categories.

Bytes downloaded: The above results show the number of
objects requested across different content types, but do not tell
us the contribution of these content types to the total number
of bytes downloaded. Again, for brevity, we summarize the
full distribution with the median values for different website
categories. Surprisingly, we find that Javascript objects
contribute a sizeable fraction of the total number of bytes
downloaded (the median fraction of bytes is over 25% across
all categories). Less surprising is that images contribute a
similar fraction as well. For websites in the Kids and Teens
category, like in the case of number of objects, the
contribution of Flash is significantly greater than in other
categories. As in the case of the number of objects, we see no
significant difference across different rank ranges. Fraction of

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

202

objects accounted for by Flash objects, normalized per
category.

B. Service Complexity

Anecdotal evidence suggests that the seemingly simple task of
loading a webpage today requires the client-side browser to
connect to multiple servers distributed across several
administrative domains. However, there is no systematic
understanding of how many different services are involved
and what they contribute to the overall task. To this end, we
introduce several service complexity metrics. Number of
distinct servers: the distribution across websites of the number
of distinct webservers that a client contacts to render the base
web page of each website. We identify a server by its fully
qualified domain name, e.g., bar.foo.com. Across all five rank
ranges, close to 25–55% of the websites require a client to
contact at least 10 distinct servers. Thus, even loading simple
content like the base page of websites requires a client to open
multiple HTTP/TCP connections to many distinct servers.
News sites have the most number of distinct servers as well.
Number of non-origin services: Not all the servers contacted
in loading a web page may be under the web page provider’s
control. For example, a typical website today uses content
distribution networks (e.g., Akamai, Limelight) to distribute
static content, analytics services (e.g., google-analytics) to
track user activity, and advertisement services (e.g.,
doubleclick) to monetize visits. Identifying non-origins,
however, is slightly tricky. The subtle issue at hand is that
some providers use multiple origins to serve content. For
example, yahoo.com also owns yimg.com and uses both
domains to serve content. Even though their top-level domains
are different, we do not want to count yimg.com as a non-
origin for yahoo.com because they are owned by the same
entity. To this end, we use the following heuristic. We start by
using the two level domain identifier to identify an origin; e.g.,
x.foo.com and y.foo.com are clustered to the same logical
origin foo.com. Next, we consider all two-level domains
involved in loading the base page of www.foo.com, and
identify all potential non-origin domains (i.e., two-level
domain not equal to foo.com). We then do an additional check
and mark domains as belonging to different origins only if the
authoritative name servers of the two domains do not match
[33]. Because yimg.com and yahoo.com share the same
authoritative name servers, we avoid classifying yimg.com as
having a different origin from yahoo.com.

C. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT
Architect and has been designing Mission Critical System and
Service Solutions; He has published papers in IEEE and other
International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which
conducts research and design of High Performance Smart Grid
Services and Systems and design mission critical architecture

for High Performance Computing Platform and Computational
Intelligence and High Speed Communication systems. He is a
member of IEEE (Institute for Electrical and Electronics
Engineers), the AAAI (Association for the Advancement of
Artificial Intelligence) and the AACR (American Association
for Cancer Research). He is the recipient of numerous awards
from World Congress in Computer Science, Computer
Engineering and Applied Computing 2010, 2011, and IP
Multimedia System 2008 and Billing and Roaming 2008. He is
active research in the field of Artificial Intelligence and
advancement in Medical Systems. He is in Industry for 18
Years where he performed various role to provide the
Leadership in Information Technology and Cutting edge
Technology.

V. REFERENCES

[1] Dynamics and Control of Large Electric Power Systems. Ilic, M. and
Zaborszky, J. John Wiley & Sons, Inc. © 2000, p. 756.
[2] Modeling and Evaluation of Intrusion Tolerant Systems Based on
Dynamic Diversity Backups. Meng, K. et al. Proceedings of the 2009
International Symposium on Information Processing (ISIP’09). Huangshan, P.
R. China, August 21-23, 2009, pp. 101–104
[3] Characterizing Intrusion Tolerant Systems Using A State Transition
Model. Gong, F. et al., April 24, 2010.
[4] Energy Assurance Daily, September 27, 2007. U.S. Department of Energy,
Office of Electricity Delivery and Energy Reliability, Infrastructure Security
and Energy Restoration Division. April 25, 2010.
[5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al. Artificial
Intelligence Center, SRI International, Menlo Park, CA 2003.
[6] Handling Communication Restrictions and Team Formation in Congestion
Games, Agogino, A. and Tumer, K. Journal of Autonomous Agents and Multi
Agent Systems, 13(1):97–115, 2006.
[7] Robotics and Autonomous Systems Research, School of Mechanical,
Industrial and Manufacturing Engineering, College of Engineering, Oregon
State University
[8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, “Communication
and computation in buildings: A short introduction and overview,” IEEE
Trans. Ind. Electron., vol. 57, no. 11, pp. 3577–3584, Nov. 2010.
[9] V. C. Gungor and F. C. Lambert, “A survey on communication networks
for electric system automation,” Comput. Networks, vol. 50, pp. 877–897,
May 2006.
[10] S. Paudyal, C. Canizares, and K. Bhattacharya, “Optimal operation of
distribution feeders in smart grids,” IEEE Trans. Ind. Electron., vol. 58, no.
10, pp. 4495–4503, Oct. 2011.
[11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley,
“Telecommunications for smart grid: Backhaul solutions for the distribution
network,” in Proc. IEEE Power and Energy Society General Meeting, Jul. 25–
29, 2010, pp. 1–6.
[12] L. Wenpeng, D. Sharp, and S. Lancashire, “Smart grid communication
network capacity planning for power utilities,” in Proc. IEEE PES,
Transmission Distrib. Conf. Expo., Apr. 19–22, 2010, pp. 1–4.
[13] Y. Peizhong, A. Iwayemi, and C. Zhou, “Developing ZigBee deployment
guideline under WiFi interference for smart grid applications,” IEEE Trans.
Smart Grid, vol. 2, no. 1, pp. 110–120, Mar. 2011.
[14] C. Gezer and C. Buratti, “A ZigBee smart energy implementation for
energy efficient buildings,” in Proc. IEEE 73rd Veh. Technol. Conf. (VTC
Spring), May 15–18, 2011, pp. 1–5.
[15] R. P. Lewis, P. Igic, and Z. Zhongfu, “Assessment of communication
methods for smart electricity metering in the U.K.,” in Proc. IEEE PES/IAS
Conf. Sustainable Alternative Energy (SAE), Sep. 2009, pp. 1–4.
[16] A. Yarali, “Wireless mesh networking technology for commercial and
industrial customers,” in Proc. Elect. Comput. Eng., CCECE,May 1–4, 2008,
pp. 000047–000052.

International Journal of Engineering Sciences Paradigms and Researches, Vol. 01, Issue 01, Oct 2012
ISSN (Online): 2319-6564
www.ijesonline.com

IJESPR
www.ijesonline.com

203

[17] M. Y. Zhai, “Transmission characteristics of low-voltage distribution
networks in China under the smart grids environment,” IEEE Trans. Power
Delivery, vol. 26, no. 1, pp. 173–180, Jan. 2011.
[18] V. Paruchuri, A. Durresi, and M. Ramesh, “Securing powerline
communications,” in Proc. IEEE Int. Symp. Power Line Commun. Appl.,
(ISPLC), Apr. 2–4, 2008, pp. 64–69.
[19] Q.Yang, J. A. Barria, and T. C. Green, “Communication infrastructures
for distributed control of power distribution networks,” IEEE Trans. Ind.
Inform., vol. 7, no. 2, pp. 316–327, May 2011.
[20] T. Sauter and M. Lobashov, “End-to-end communication architecture for
smart grids,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1218–1228, Apr.
2011.
[21] K. Moslehi and R. Kumar, “Smart grid—A reliability perspective,”
Innovative Smart Grid Technologies (ISGT), pp. 1–8, Jan. 19–21, 2010.
[22] Southern Company Services, Inc., “Comments request for information on
smart grid communications requirements,” Jul. 2010
[23] R. Bo and F. Li, “Probabilistic LMP forecasting considering load
uncertainty,” IEEE Trans. Power Syst., vol. 24, pp. 1279–1289, Aug. 2009.
[24] Power Line Communications, H. Ferreira, L. Lampe, J. Newbury, and T.
Swart (Editors), Eds. New York: Wiley, 2010.
[25] G. Bumiller, “Single frequency network technology for fast ad hoc
communication networks over power lines,” WiKu-Wissenschaftsverlag Dr.
Stein 2010.

[31] G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communications
for large-scale control and automation systems,” IEEE Commun. Mag., vol.
48, no. 4, pp. 106–113, Apr. 2010.
[32] M. Biagi and L. Lampe, “Location assisted routing techniques for power
line communication in smart grids,” in Proc. IEEE Int. Conf. Smart Grid
Commun., 2010, pp. 274–278.
[33] J. Sanchez, P. Ruiz, and R. Marin-Perez, “Beacon-less geographic
routing made partical: Challenges, design guidelines and protocols,” IEEE
Commun. Mag., vol. 47, no. 8, pp. 85–91, Aug. 2009.
[34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and M. Zorzi,
“The deployment of a smart monitoring system using wireless sensors and
actuators networks,” in Proc. IEEE Int. Conf. Smart Grid Commun.
(SmartGridComm), 2010, pp. 49–54.
[35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, “Hydro: A hybrid
routing protocol for low-power and lossy networks,” in Proc. IEEE Int. Conf.
Smart Grid Commun. (SmartGridComm), 2010, pp. 268–273.
[36] S. Goldfisher and S. J. Tanabe, “IEEE 1901 access system: An overview
of its uniqueness and motivation,” IEEE Commun. Mag., vol. 48, no. 10, pp.
150–157, Oct. 2010.
[37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, “Smart grid
communications and networking,” Türk Telekom, Tech. Rep. 11316-01, Apr
2011.

